A Formal Modeling and Verification Scheme with an RNN-Based Attacker for CAN Communication System Authenticity

To enhance the attack resistance of the Controller Area Network (CAN) system and optimize the communication software design, a comprehensive model that combines a variable attacker with the CAN bus (VACB) is proposed to evaluate the bus communication risk. The VACB model consists of a variable attac...

Full description

Bibliographic Details
Main Authors: Yihua Wang, Qing Zhou, Yu Zhang, Xian Zhang, Jiahao Du
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/11/1773
Description
Summary:To enhance the attack resistance of the Controller Area Network (CAN) system and optimize the communication software design, a comprehensive model that combines a variable attacker with the CAN bus (VACB) is proposed to evaluate the bus communication risk. The VACB model consists of a variable attacker and the CAN bus model. A variable attacker is a visualized generation of the attack traffic based on a recurrent neural network (RNN), which is used to evaluate the anti-attack performance of the CAN bus; the CAN bus model combines the data link layer and the application layer to analyze the anomalies in CAN bus data transmission after the attack message. The simulation results indicate that the transmission accuracy and successful response rate decreased by 1.8% and 4.3% under the constructed variable attacker. The CAN bus’s authenticity was promoted after the developers adopted this model to analyze and optimize the software design. The transmission accuracy and the successful response rate were improved by 2.5% and 5.1%, respectively. Moreover, the model can quantify the risk of potential attacks on the CAN bus, prompting developers to avoid it in early development to reduce the loss caused by system crashes. The comprehensive model can provide theoretical guidance for the timing design of embedded software.
ISSN:2079-9292