Evolutionary design of explainable algorithms for biomedical image segmentation

Abstract An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human exp...

Full description

Bibliographic Details
Main Authors: Kévin Cortacero, Brienne McKenzie, Sabina Müller, Roxana Khazen, Fanny Lafouresse, Gaëlle Corsaut, Nathalie Van Acker, François-Xavier Frenois, Laurence Lamant, Nicolas Meyer, Béatrice Vergier, Dennis G. Wilson, Hervé Luga, Oskar Staufer, Michael L. Dustin, Salvatore Valitutti, Sylvain Cussat-Blanc
Format: Article
Language:English
Published: Nature Portfolio 2023-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-42664-x
_version_ 1827764291170729984
author Kévin Cortacero
Brienne McKenzie
Sabina Müller
Roxana Khazen
Fanny Lafouresse
Gaëlle Corsaut
Nathalie Van Acker
François-Xavier Frenois
Laurence Lamant
Nicolas Meyer
Béatrice Vergier
Dennis G. Wilson
Hervé Luga
Oskar Staufer
Michael L. Dustin
Salvatore Valitutti
Sylvain Cussat-Blanc
author_facet Kévin Cortacero
Brienne McKenzie
Sabina Müller
Roxana Khazen
Fanny Lafouresse
Gaëlle Corsaut
Nathalie Van Acker
François-Xavier Frenois
Laurence Lamant
Nicolas Meyer
Béatrice Vergier
Dennis G. Wilson
Hervé Luga
Oskar Staufer
Michael L. Dustin
Salvatore Valitutti
Sylvain Cussat-Blanc
author_sort Kévin Cortacero
collection DOAJ
description Abstract An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.
first_indexed 2024-03-11T11:03:18Z
format Article
id doaj.art-755405e7d248417ea16e00b6baf15051
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-11T11:03:18Z
publishDate 2023-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-755405e7d248417ea16e00b6baf150512023-11-12T12:22:44ZengNature PortfolioNature Communications2041-17232023-11-0114111810.1038/s41467-023-42664-xEvolutionary design of explainable algorithms for biomedical image segmentationKévin Cortacero0Brienne McKenzie1Sabina Müller2Roxana Khazen3Fanny Lafouresse4Gaëlle Corsaut5Nathalie Van Acker6François-Xavier Frenois7Laurence Lamant8Nicolas Meyer9Béatrice Vergier10Dennis G. Wilson11Hervé Luga12Oskar Staufer13Michael L. Dustin14Salvatore Valitutti15Sylvain Cussat-Blanc16Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse (IUCT)Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse (IUCT)Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse (IUCT)Department of Dermatology, IUCTService de Pathologie, Centre Hospitalier Universitaire de BordeauxUniversity of Toulouse - Institut de Recherche en Informatique de Toulouse (IRIT) - UMR5505, Artificial and Natural Intelligence Toulouse InstituteUniversity of Toulouse - Institut de Recherche en Informatique de Toulouse (IRIT) - UMR5505, Artificial and Natural Intelligence Toulouse InstituteKennedy Institute of Rheumatology (KIR), Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of OxfordKennedy Institute of Rheumatology (KIR), Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of OxfordInstitut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Centre de Recherche en Cancérologie de Toulouse (CRCT)University of Toulouse - Institut de Recherche en Informatique de Toulouse (IRIT) - UMR5505, Artificial and Natural Intelligence Toulouse InstituteAbstract An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.https://doi.org/10.1038/s41467-023-42664-x
spellingShingle Kévin Cortacero
Brienne McKenzie
Sabina Müller
Roxana Khazen
Fanny Lafouresse
Gaëlle Corsaut
Nathalie Van Acker
François-Xavier Frenois
Laurence Lamant
Nicolas Meyer
Béatrice Vergier
Dennis G. Wilson
Hervé Luga
Oskar Staufer
Michael L. Dustin
Salvatore Valitutti
Sylvain Cussat-Blanc
Evolutionary design of explainable algorithms for biomedical image segmentation
Nature Communications
title Evolutionary design of explainable algorithms for biomedical image segmentation
title_full Evolutionary design of explainable algorithms for biomedical image segmentation
title_fullStr Evolutionary design of explainable algorithms for biomedical image segmentation
title_full_unstemmed Evolutionary design of explainable algorithms for biomedical image segmentation
title_short Evolutionary design of explainable algorithms for biomedical image segmentation
title_sort evolutionary design of explainable algorithms for biomedical image segmentation
url https://doi.org/10.1038/s41467-023-42664-x
work_keys_str_mv AT kevincortacero evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT briennemckenzie evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT sabinamuller evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT roxanakhazen evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT fannylafouresse evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT gaellecorsaut evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT nathalievanacker evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT francoisxavierfrenois evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT laurencelamant evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT nicolasmeyer evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT beatricevergier evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT dennisgwilson evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT herveluga evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT oskarstaufer evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT michaelldustin evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT salvatorevalitutti evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation
AT sylvaincussatblanc evolutionarydesignofexplainablealgorithmsforbiomedicalimagesegmentation