Tailoring of novel biologically active molecules based on N4-substituted sulfonamides bearing thiazole moiety exhibiting unique multi-addressable biological potentials

Nowadays, the growth of drug-resistant microbial strains (MDRs) is a serious public health threat worldwide. Moreover, tens of millions of people are annually diagnosed with cancer worldwide, and more than half of patients ultimately die. In the present study, a new series of 2-(4-substituted-thiazo...

Full description

Bibliographic Details
Main Authors: Essam M. Hussein, Munirah M. Al-Rooqi, Amal A. Elkhawaga, Saleh A. Ahmed
Format: Article
Language:English
Published: Elsevier 2020-05-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220300824
Description
Summary:Nowadays, the growth of drug-resistant microbial strains (MDRs) is a serious public health threat worldwide. Moreover, tens of millions of people are annually diagnosed with cancer worldwide, and more than half of patients ultimately die. In the present study, a new series of 2-(4-substituted-thiazol-2-ylamino)acetamides and N-(4-substituted-thiazol-2-yl)acetamides incorporating sulfonamide moieties were designed, synthesized, well-characterized and successfully evaluated for their antimicrobial activity against multidrug resistant strains and screened for cytotoxic activity against normal lung fibroblast (WI-38), human lung carcinoma (A549), and human breast carcinoma (MDA-MB-231) cell lines. Fluorescence-activated cell sorting (FACS) analysis and molecular modeling study were performed to identify the mode of action of the novel synthesized compounds and their binding interactions with the active sites of dihydrofolate reductase enzyme (DHFR).
ISSN:1878-5352