Testing animal-assisted cleaning prior to transplantation in coral reef restoration

Rearing coral fragments in nurseries and subsequent transplantation onto a degraded reef is a common approach for coral reef restoration. However, if barnacles and other biofouling organisms are not removed prior to transplantation, fish will dislodge newly cemented corals when feeding on biofouling...

Full description

Bibliographic Details
Main Authors: Sarah Frias-Torres, Casper van de Geer
Format: Article
Language:English
Published: PeerJ Inc. 2015-09-01
Series:PeerJ
Subjects:
Online Access:https://peerj.com/articles/1287.pdf
Description
Summary:Rearing coral fragments in nurseries and subsequent transplantation onto a degraded reef is a common approach for coral reef restoration. However, if barnacles and other biofouling organisms are not removed prior to transplantation, fish will dislodge newly cemented corals when feeding on biofouling organisms. This behavior can lead to an increase in diver time due to the need to reattach the corals. Thus, cleaning nurseries to remove biofouling organisms such as algae and invertebrates is necessary prior to transplantation, and this cleaning constitutes a significant time investment in a restoration project. We tested a novel biomimicry technique of animal-assisted cleaning on nursery corals prior to transplantation at a coral reef restoration site in Seychelles, Indian Ocean. To determine whether animal-assisted cleaning was possible, preliminary visual underwater surveys were performed to quantify the fish community at the study site. Then, cleaning stations consisting of nursery ropes carrying corals and biofouling organisms, set at 0.3 m, 2 m, 4 m, 6 m and 8 m from the seabed, were placed at both the transplantation (treatment) site and the nursery (control) site. Remote GoPro video cameras recorded fish feeding at the nursery ropes without human disturbance. A reef fish assemblage of 32 species from 4 trophic levels (18.8% herbivores, 18.8% omnivores, 59.3% secondary consumers and 3.1% carnivores) consumed 95% of the barnacles on the coral nursery ropes placed 0.3 m above the seabed. Using this cleaning station, we reduced coral dislodgement from 16% to zero. This cleaning station technique could be included as a step prior to coral transplantation worldwide on the basis of location-specific fish assemblages and during the early nursery phase of sexually produced juvenile corals.
ISSN:2167-8359