Summary: | The frequency responses of the transient wave propagating in a pump–pipe–valve system are studied with the system transfer matrix analysis (STMA) method. Being different to that in the reservoir–pipe–valve system, the transient wave is used as a long-distance communication technology in the pump–pipe–valve system, and very few works have been done on the model analysis and strategies to control the behavior of the oscillation signal of the pipe pressure. The theoretic solutions are studied with three internal friction models: frictionless, steady friction, and unsteady friction. The dimensionless parameter of the valve signal intensity (VSI) is proposed, and it is found to be a key factor affecting the quality of the wave propagation in the pipe. A larger pressure oscillation at the upstream side results when the VSI is smaller than one, whereas a more uniform amplitude for the resonances and anti-resonances is obtained when VSI approaches one. Some feasible suggestions are provided to obtain high quality wave signals.
|