On the intrinsic disorder status of the major players in programmed cell death pathways [v1; ref status: indexed, http://f1000r.es/1me]

Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a...

Full description

Bibliographic Details
Main Authors: Alexey V Uversky, Bin Xue, Zhenling Peng, Lukasz Kurgan, Vladimir N Uversky
Format: Article
Language:English
Published: F1000 Research Ltd 2013-09-01
Series:F1000Research
Subjects:
Online Access:http://f1000research.com/articles/2-190/v1
Description
Summary:Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways.
ISSN:2046-1402