A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices

In this paper, our first purpose is to describe a class of phenomena involving the growth in the Hadamard–Kong product of several Dirichlet series with different growth indices. We prove that (i) the order of the Hadamard–Kong product series is determined by the growth in the Dirichlet series with s...

Full description

Bibliographic Details
Main Authors: Hongyan Xu, Guangsheng Chen, Hari Mohan Srivastava, Hong Li, Zuxing Xuan, Yongqin Cui
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/13/2220
_version_ 1797434089164242944
author Hongyan Xu
Guangsheng Chen
Hari Mohan Srivastava
Hong Li
Zuxing Xuan
Yongqin Cui
author_facet Hongyan Xu
Guangsheng Chen
Hari Mohan Srivastava
Hong Li
Zuxing Xuan
Yongqin Cui
author_sort Hongyan Xu
collection DOAJ
description In this paper, our first purpose is to describe a class of phenomena involving the growth in the Hadamard–Kong product of several Dirichlet series with different growth indices. We prove that (i) the order of the Hadamard–Kong product series is determined by the growth in the Dirichlet series with smaller indices if these Dirichlet series have different growth indices; (ii) the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><mn>1</mn></msub></semantics></math></inline-formula>-type of the Hadamard–Kong product series is equal to zero if <i>p</i> Dirichlet series are of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><mi>j</mi></msub></semantics></math></inline-formula>-regular growth, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mn>1</mn></msub><mo><</mo><msub><mi>q</mi><mn>2</mn></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mi>q</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mi>j</mi></msub><mo>∈</mo><msub><mi>N</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi></mrow></semantics></math></inline-formula>. The second purpose is to reveal the properties of the growth in the Hadamard–Kong product series of two Dirichlet series—when one Dirichlet series is of finite order, the other is of logarithmic order, and two Dirichlet series are of finite logarithmic order—and obtain the growth relationships between the Hadamard–Kong product series and two Dirchlet series concerning the order, the logarithmic order, logarithmic type, etc. Finally, some examples are given to show that our results are best possible.
first_indexed 2024-03-09T10:27:16Z
format Article
id doaj.art-756aea18a7b544488b33eb59f00a6e93
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T10:27:16Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-756aea18a7b544488b33eb59f00a6e932023-12-01T21:35:09ZengMDPI AGMathematics2227-73902022-06-011013222010.3390/math10132220A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth IndicesHongyan Xu0Guangsheng Chen1Hari Mohan Srivastava2Hong Li3Zuxing Xuan4Yongqin Cui5College of Arts and Sciences, Suqian University, Suqian 223800, ChinaCollege of Mathematics and Computer Science, Guangxi Science & Technology Normal University, Laibin 546199, ChinaDepartment of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaSchool of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, ChinaDepartment of General Education, Beijing Union University, Beijing 100101, ChinaDepartment of Informatics and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, ChinaIn this paper, our first purpose is to describe a class of phenomena involving the growth in the Hadamard–Kong product of several Dirichlet series with different growth indices. We prove that (i) the order of the Hadamard–Kong product series is determined by the growth in the Dirichlet series with smaller indices if these Dirichlet series have different growth indices; (ii) the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><mn>1</mn></msub></semantics></math></inline-formula>-type of the Hadamard–Kong product series is equal to zero if <i>p</i> Dirichlet series are of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>q</mi><mi>j</mi></msub></semantics></math></inline-formula>-regular growth, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mn>1</mn></msub><mo><</mo><msub><mi>q</mi><mn>2</mn></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mi>q</mi><mi>p</mi></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>q</mi><mi>j</mi></msub><mo>∈</mo><msub><mi>N</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>p</mi></mrow></semantics></math></inline-formula>. The second purpose is to reveal the properties of the growth in the Hadamard–Kong product series of two Dirichlet series—when one Dirichlet series is of finite order, the other is of logarithmic order, and two Dirichlet series are of finite logarithmic order—and obtain the growth relationships between the Hadamard–Kong product series and two Dirchlet series concerning the order, the logarithmic order, logarithmic type, etc. Finally, some examples are given to show that our results are best possible.https://www.mdpi.com/2227-7390/10/13/2220Dirichlet seriesHadamard–Kong productgrowth
spellingShingle Hongyan Xu
Guangsheng Chen
Hari Mohan Srivastava
Hong Li
Zuxing Xuan
Yongqin Cui
A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
Mathematics
Dirichlet series
Hadamard–Kong product
growth
title A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
title_full A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
title_fullStr A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
title_full_unstemmed A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
title_short A Study of the Growth Results for the Hadamard Product of Several Dirichlet Series with Different Growth Indices
title_sort study of the growth results for the hadamard product of several dirichlet series with different growth indices
topic Dirichlet series
Hadamard–Kong product
growth
url https://www.mdpi.com/2227-7390/10/13/2220
work_keys_str_mv AT hongyanxu astudyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT guangshengchen astudyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT harimohansrivastava astudyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT hongli astudyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT zuxingxuan astudyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT yongqincui astudyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT hongyanxu studyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT guangshengchen studyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT harimohansrivastava studyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT hongli studyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT zuxingxuan studyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices
AT yongqincui studyofthegrowthresultsforthehadamardproductofseveraldirichletserieswithdifferentgrowthindices