In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2

Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC<sub>50</sub> values reported for a structurally diverse dataset. A robust model with only five des...

Full description

Bibliographic Details
Main Authors: Sebastián A. Cuesta, José R. Mora, Edgar A. Márquez
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/4/1100
_version_ 1797395984599220224
author Sebastián A. Cuesta
José R. Mora
Edgar A. Márquez
author_facet Sebastián A. Cuesta
José R. Mora
Edgar A. Márquez
author_sort Sebastián A. Cuesta
collection DOAJ
description Coronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC<sub>50</sub> values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R<sup>2</sup> = 0.897, Q<sup>2</sup><sub>LOO</sub> = 0.854, and Q<sup>2</sup><sub>ext</sub> = 0.876 and complying with all the parameters established in the validation Tropsha’s test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC<sub>50</sub> value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC<sub>50</sub> values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.
first_indexed 2024-03-09T00:43:45Z
format Article
id doaj.art-75738541e73e4517b80fffa37afd2d1d
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-09T00:43:45Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-75738541e73e4517b80fffa37afd2d1d2023-12-11T17:39:32ZengMDPI AGMolecules1420-30492021-02-01264110010.3390/molecules26041100In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2Sebastián A. Cuesta0José R. Mora1Edgar A. Márquez2Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politécnico, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, EcuadorGrupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Colegio Politécnico, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, EcuadorGrupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, ColombiaCoronavirus desease 2019 (COVID-19) is responsible for more than 1.80 M deaths worldwide. A Quantitative Structure-Activity Relationships (QSAR) model is developed based on experimental pIC<sub>50</sub> values reported for a structurally diverse dataset. A robust model with only five descriptors is found, with values of R<sup>2</sup> = 0.897, Q<sup>2</sup><sub>LOO</sub> = 0.854, and Q<sup>2</sup><sub>ext</sub> = 0.876 and complying with all the parameters established in the validation Tropsha’s test. The analysis of the applicability domain (AD) reveals coverage of about 90% for the external test set. Docking and molecular dynamic analysis are performed on the three most relevant biological targets for SARS-CoV-2: main protease, papain-like protease, and RNA-dependent RNA polymerase. A screening of the DrugBank database is executed, predicting the pIC<sub>50</sub> value of 6664 drugs, which are IN the AD of the model (coverage = 79%). Fifty-seven possible potent anti-COVID-19 candidates with pIC<sub>50</sub> values > 6.6 are identified, and based on a pharmacophore modelling analysis, four compounds of this set can be suggested as potent candidates to be potential inhibitors of SARS-CoV-2. Finally, the biological activity of the compounds was related to the frontier molecular orbitals shapes.https://www.mdpi.com/1420-3049/26/4/1100SARS-CoV-2QSARdocking analysisDrugBankmolecular dynamics
spellingShingle Sebastián A. Cuesta
José R. Mora
Edgar A. Márquez
In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2
Molecules
SARS-CoV-2
QSAR
docking analysis
DrugBank
molecular dynamics
title In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2
title_full In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2
title_fullStr In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2
title_full_unstemmed In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2
title_short In Silico Screening of the DrugBank Database to Search for Possible Drugs against SARS-CoV-2
title_sort in silico screening of the drugbank database to search for possible drugs against sars cov 2
topic SARS-CoV-2
QSAR
docking analysis
DrugBank
molecular dynamics
url https://www.mdpi.com/1420-3049/26/4/1100
work_keys_str_mv AT sebastianacuesta insilicoscreeningofthedrugbankdatabasetosearchforpossibledrugsagainstsarscov2
AT josermora insilicoscreeningofthedrugbankdatabasetosearchforpossibledrugsagainstsarscov2
AT edgaramarquez insilicoscreeningofthedrugbankdatabasetosearchforpossibledrugsagainstsarscov2