Summary: | Zeolitic imidazolate frameworks (ZIFs) are widely used MOFs because of certain characteristics, but also because they can be prepared at room temperature using water as the unique solvent. However, these a priori sustainable conditions inevitably entail a huge and somehow unusable excess of linker. Here, we present the formation of ZIFs at room temperature in water, starting from mixtures with a linker/metal ratio of two, that is, coinciding with the stoichiometry found in the final MOFs, in the presence of amines. ZIF-8 can be prepared with triethylamine (TEA), giving a yield of Zn of 96.6%. Other bases, like NaOH, tetraethylammonium hydroxide or ammonium hydroxide, do not lead to ZIF-8 under the same conditions. The so-obtained ZIF-8 contains TEA inside its cavities, making it less porous than its conventionally prepared counterparts. Amine can be removed by mild thermal treatments (200–250 °C). Such thermal treatments induce the generation of g-C<sub>3</sub>N<sub>4</sub>-like species which could give added value to these materials as potential photocatalysts, increasing their affinity to CO<sub>2</sub>, as proved in this work. This methodology can be successfully extended to other amines, like N,N-dicyclohexylmethylamine, as well as to other prepared ZIFs, like Co-based ZIF-67, isostructural to ZIF-8.
|