Approximation by Quantum Meyer-König-Zeller Fractal Functions

In this paper, a novel class of quantum fractal functions is introduced based on the Meyer-König-Zeller operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mrow><mi>...

Full description

Bibliographic Details
Main Authors: Deependra Kumar, Arya K. B. Chand, Peter R. Massopust
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Fractal and Fractional
Subjects:
Online Access:https://www.mdpi.com/2504-3110/6/12/704
_version_ 1827639200894156800
author Deependra Kumar
Arya K. B. Chand
Peter R. Massopust
author_facet Deependra Kumar
Arya K. B. Chand
Peter R. Massopust
author_sort Deependra Kumar
collection DOAJ
description In this paper, a novel class of quantum fractal functions is introduced based on the Meyer-König-Zeller operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mrow><mi>q</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula>. These quantum Meyer-König-Zeller (MKZ) fractal functions employ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mrow><mi>q</mi><mo>,</mo><mi>n</mi></mrow></msub><mi>f</mi></mrow></semantics></math></inline-formula> as the base function in the iterated function system for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-fractal functions. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <i>I</i> closed interval in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>, it is shown that a sequence of quantum MKZ fractal functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo stretchy="false">{</mo><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup><mo stretchy="false">}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula> exists which converges uniformly to <i>f</i> without altering the scaling function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>. The shape of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup></semantics></math></inline-formula> depends on <i>q</i> as well as the other iterated function system parameters. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>≥</mo><mi>g</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, we show that a sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo stretchy="false">{</mo><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup><mo stretchy="false">}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula> exists with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup><mo>≥</mo><mi>g</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> converging to <i>f</i>. Quantum MKZ fractal versions of some classical Müntz theorems are also presented. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the box dimension and some approximation-theoretic results of MKZ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-fractal functions are investigated in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Finally, MKZ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-fractal functions are studied in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> spaces with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T16:35:15Z
format Article
id doaj.art-758c42cc6b754f439805cbd8ccd9dcbe
institution Directory Open Access Journal
issn 2504-3110
language English
last_indexed 2024-03-09T16:35:15Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Fractal and Fractional
spelling doaj.art-758c42cc6b754f439805cbd8ccd9dcbe2023-11-24T14:57:14ZengMDPI AGFractal and Fractional2504-31102022-11-0161270410.3390/fractalfract6120704Approximation by Quantum Meyer-König-Zeller Fractal FunctionsDeependra Kumar0Arya K. B. Chand1Peter R. Massopust2Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, IndiaDepartment of Mathematics, Indian Institute of Technology Madras, Chennai 600036, IndiaCentre of Mathematics, Technical University of Munich (TUM), 85748 Garching b. München, GermanyIn this paper, a novel class of quantum fractal functions is introduced based on the Meyer-König-Zeller operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>M</mi><mrow><mi>q</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula>. These quantum Meyer-König-Zeller (MKZ) fractal functions employ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>M</mi><mrow><mi>q</mi><mo>,</mo><mi>n</mi></mrow></msub><mi>f</mi></mrow></semantics></math></inline-formula> as the base function in the iterated function system for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-fractal functions. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <i>I</i> closed interval in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">R</mi></semantics></math></inline-formula>, it is shown that a sequence of quantum MKZ fractal functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo stretchy="false">{</mo><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup><mo stretchy="false">}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula> exists which converges uniformly to <i>f</i> without altering the scaling function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>. The shape of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup></semantics></math></inline-formula> depends on <i>q</i> as well as the other iterated function system parameters. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>≥</mo><mi>g</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>, we show that a sequence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mrow><mo stretchy="false">{</mo><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup><mo stretchy="false">}</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mo>∞</mo></msubsup></semantics></math></inline-formula> exists with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>q</mi><mi>n</mi></msub><mo>,</mo><mi>α</mi><mo>)</mo></mrow></msubsup><mo>≥</mo><mi>g</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula> converging to <i>f</i>. Quantum MKZ fractal versions of some classical Müntz theorems are also presented. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the box dimension and some approximation-theoretic results of MKZ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-fractal functions are investigated in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mi>I</mi><mo>)</mo></mrow></semantics></math></inline-formula>. Finally, MKZ <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-fractal functions are studied in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mi>p</mi></msup></semantics></math></inline-formula> spaces with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2504-3110/6/12/704fractal interpolation functionquantum meyer-könig-zeller operatorsmooth quantum fractal functionsconstrained approximationmüntz polynomials
spellingShingle Deependra Kumar
Arya K. B. Chand
Peter R. Massopust
Approximation by Quantum Meyer-König-Zeller Fractal Functions
Fractal and Fractional
fractal interpolation function
quantum meyer-könig-zeller operator
smooth quantum fractal functions
constrained approximation
müntz polynomials
title Approximation by Quantum Meyer-König-Zeller Fractal Functions
title_full Approximation by Quantum Meyer-König-Zeller Fractal Functions
title_fullStr Approximation by Quantum Meyer-König-Zeller Fractal Functions
title_full_unstemmed Approximation by Quantum Meyer-König-Zeller Fractal Functions
title_short Approximation by Quantum Meyer-König-Zeller Fractal Functions
title_sort approximation by quantum meyer konig zeller fractal functions
topic fractal interpolation function
quantum meyer-könig-zeller operator
smooth quantum fractal functions
constrained approximation
müntz polynomials
url https://www.mdpi.com/2504-3110/6/12/704
work_keys_str_mv AT deependrakumar approximationbyquantummeyerkonigzellerfractalfunctions
AT aryakbchand approximationbyquantummeyerkonigzellerfractalfunctions
AT peterrmassopust approximationbyquantummeyerkonigzellerfractalfunctions