Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modula...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2023-02-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphys.2023.1102983/full |
_version_ | 1811168220978085888 |
---|---|
author | Chau Vu Chau Vu Botian Xu Botian Xu Clio González-Zacarías Clio González-Zacarías Clio González-Zacarías Jian Shen Jian Shen Koen P. A. Baas Soyoung Choi Soyoung Choi Soyoung Choi Aart J. Nederveen John C. Wood John C. Wood |
author_facet | Chau Vu Chau Vu Botian Xu Botian Xu Clio González-Zacarías Clio González-Zacarías Clio González-Zacarías Jian Shen Jian Shen Koen P. A. Baas Soyoung Choi Soyoung Choi Soyoung Choi Aart J. Nederveen John C. Wood John C. Wood |
author_sort | Chau Vu |
collection | DOAJ |
description | Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modulation of end-tidal CO2 pressures (SineCO2), which has previously been used to measure cerebrovascular reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure brain perfusion.Methods:SineCO2 was performed in 10 healthy volunteers (age 37 ± 11, 60% female), and tracer kinetics model was applied in the frequency domain to calculate cerebral blood flow, cerebral blood volume, mean transit time, and temporal delay. These perfusion estimates were compared against reference techniques, including gadolinium-based DSC, arterial spin labeling, and phase contrast.Results: Our results showed regional agreement between SineCO2 and the clinical comparators. SineCO2 was able to generate robust CVR maps in conjunction to baseline perfusion estimates.Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2 respiratory paradigm to simultaneously acquire both cerebral perfusion and cerebrovascular reactivity maps in one imaging sequence. |
first_indexed | 2024-04-10T16:23:34Z |
format | Article |
id | doaj.art-758db1b668e54658aedb0bedbff6c9ac |
institution | Directory Open Access Journal |
issn | 1664-042X |
language | English |
last_indexed | 2024-04-10T16:23:34Z |
publishDate | 2023-02-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Physiology |
spelling | doaj.art-758db1b668e54658aedb0bedbff6c9ac2023-02-09T10:40:02ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2023-02-011410.3389/fphys.2023.11029831102983Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRIChau Vu0Chau Vu1Botian Xu2Botian Xu3Clio González-Zacarías4Clio González-Zacarías5Clio González-Zacarías6Jian Shen7Jian Shen8Koen P. A. Baas9Soyoung Choi10Soyoung Choi11Soyoung Choi12Aart J. Nederveen13John C. Wood14John C. Wood15Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesNeuroscience Graduate Program, University of Southern California, Los Angeles, CA, United StatesSignal and Image Processing Institute, University of Southern California, Los Angeles, CA, United StatesDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesDepartment of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, NetherlandsDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesNeuroscience Graduate Program, University of Southern California, Los Angeles, CA, United StatesSignal and Image Processing Institute, University of Southern California, Los Angeles, CA, United StatesDepartment of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, NetherlandsDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesIntroduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modulation of end-tidal CO2 pressures (SineCO2), which has previously been used to measure cerebrovascular reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure brain perfusion.Methods:SineCO2 was performed in 10 healthy volunteers (age 37 ± 11, 60% female), and tracer kinetics model was applied in the frequency domain to calculate cerebral blood flow, cerebral blood volume, mean transit time, and temporal delay. These perfusion estimates were compared against reference techniques, including gadolinium-based DSC, arterial spin labeling, and phase contrast.Results: Our results showed regional agreement between SineCO2 and the clinical comparators. SineCO2 was able to generate robust CVR maps in conjunction to baseline perfusion estimates.Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2 respiratory paradigm to simultaneously acquire both cerebral perfusion and cerebrovascular reactivity maps in one imaging sequence.https://www.frontiersin.org/articles/10.3389/fphys.2023.1102983/fullbrain perfusionrespiratory challengescerebrovascular reactivity (CVR)carbon dioxide challengedeoxygenationdynamic susceptibility contrast (DSC) |
spellingShingle | Chau Vu Chau Vu Botian Xu Botian Xu Clio González-Zacarías Clio González-Zacarías Clio González-Zacarías Jian Shen Jian Shen Koen P. A. Baas Soyoung Choi Soyoung Choi Soyoung Choi Aart J. Nederveen John C. Wood John C. Wood Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI Frontiers in Physiology brain perfusion respiratory challenges cerebrovascular reactivity (CVR) carbon dioxide challenge deoxygenation dynamic susceptibility contrast (DSC) |
title | Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI |
title_full | Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI |
title_fullStr | Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI |
title_full_unstemmed | Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI |
title_short | Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI |
title_sort | sinusoidal co2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity mri |
topic | brain perfusion respiratory challenges cerebrovascular reactivity (CVR) carbon dioxide challenge deoxygenation dynamic susceptibility contrast (DSC) |
url | https://www.frontiersin.org/articles/10.3389/fphys.2023.1102983/full |
work_keys_str_mv | AT chauvu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT chauvu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT botianxu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT botianxu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT cliogonzalezzacarias sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT cliogonzalezzacarias sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT cliogonzalezzacarias sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT jianshen sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT jianshen sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT koenpabaas sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT soyoungchoi sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT soyoungchoi sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT soyoungchoi sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT aartjnederveen sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT johncwood sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri AT johncwood sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri |