Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI

Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modula...

Full description

Bibliographic Details
Main Authors: Chau Vu, Botian Xu, Clio González-Zacarías, Jian Shen, Koen P. A. Baas, Soyoung Choi, Aart J. Nederveen, John C. Wood
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-02-01
Series:Frontiers in Physiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphys.2023.1102983/full
_version_ 1811168220978085888
author Chau Vu
Chau Vu
Botian Xu
Botian Xu
Clio González-Zacarías
Clio González-Zacarías
Clio González-Zacarías
Jian Shen
Jian Shen
Koen P. A. Baas
Soyoung Choi
Soyoung Choi
Soyoung Choi
Aart J. Nederveen
John C. Wood
John C. Wood
author_facet Chau Vu
Chau Vu
Botian Xu
Botian Xu
Clio González-Zacarías
Clio González-Zacarías
Clio González-Zacarías
Jian Shen
Jian Shen
Koen P. A. Baas
Soyoung Choi
Soyoung Choi
Soyoung Choi
Aart J. Nederveen
John C. Wood
John C. Wood
author_sort Chau Vu
collection DOAJ
description Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modulation of end-tidal CO2 pressures (SineCO2), which has previously been used to measure cerebrovascular reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure brain perfusion.Methods:SineCO2 was performed in 10 healthy volunteers (age 37 ± 11, 60% female), and tracer kinetics model was applied in the frequency domain to calculate cerebral blood flow, cerebral blood volume, mean transit time, and temporal delay. These perfusion estimates were compared against reference techniques, including gadolinium-based DSC, arterial spin labeling, and phase contrast.Results: Our results showed regional agreement between SineCO2 and the clinical comparators. SineCO2 was able to generate robust CVR maps in conjunction to baseline perfusion estimates.Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2 respiratory paradigm to simultaneously acquire both cerebral perfusion and cerebrovascular reactivity maps in one imaging sequence.
first_indexed 2024-04-10T16:23:34Z
format Article
id doaj.art-758db1b668e54658aedb0bedbff6c9ac
institution Directory Open Access Journal
issn 1664-042X
language English
last_indexed 2024-04-10T16:23:34Z
publishDate 2023-02-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Physiology
spelling doaj.art-758db1b668e54658aedb0bedbff6c9ac2023-02-09T10:40:02ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2023-02-011410.3389/fphys.2023.11029831102983Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRIChau Vu0Chau Vu1Botian Xu2Botian Xu3Clio González-Zacarías4Clio González-Zacarías5Clio González-Zacarías6Jian Shen7Jian Shen8Koen P. A. Baas9Soyoung Choi10Soyoung Choi11Soyoung Choi12Aart J. Nederveen13John C. Wood14John C. Wood15Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesNeuroscience Graduate Program, University of Southern California, Los Angeles, CA, United StatesSignal and Image Processing Institute, University of Southern California, Los Angeles, CA, United StatesDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesDepartment of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, NetherlandsDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesNeuroscience Graduate Program, University of Southern California, Los Angeles, CA, United StatesSignal and Image Processing Institute, University of Southern California, Los Angeles, CA, United StatesDepartment of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, NetherlandsDepartment of Biomedical Engineering, University of Southern California, Los Angeles, CA, United StatesDivision of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United StatesIntroduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modulation of end-tidal CO2 pressures (SineCO2), which has previously been used to measure cerebrovascular reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure brain perfusion.Methods:SineCO2 was performed in 10 healthy volunteers (age 37 ± 11, 60% female), and tracer kinetics model was applied in the frequency domain to calculate cerebral blood flow, cerebral blood volume, mean transit time, and temporal delay. These perfusion estimates were compared against reference techniques, including gadolinium-based DSC, arterial spin labeling, and phase contrast.Results: Our results showed regional agreement between SineCO2 and the clinical comparators. SineCO2 was able to generate robust CVR maps in conjunction to baseline perfusion estimates.Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2 respiratory paradigm to simultaneously acquire both cerebral perfusion and cerebrovascular reactivity maps in one imaging sequence.https://www.frontiersin.org/articles/10.3389/fphys.2023.1102983/fullbrain perfusionrespiratory challengescerebrovascular reactivity (CVR)carbon dioxide challengedeoxygenationdynamic susceptibility contrast (DSC)
spellingShingle Chau Vu
Chau Vu
Botian Xu
Botian Xu
Clio González-Zacarías
Clio González-Zacarías
Clio González-Zacarías
Jian Shen
Jian Shen
Koen P. A. Baas
Soyoung Choi
Soyoung Choi
Soyoung Choi
Aart J. Nederveen
John C. Wood
John C. Wood
Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
Frontiers in Physiology
brain perfusion
respiratory challenges
cerebrovascular reactivity (CVR)
carbon dioxide challenge
deoxygenation
dynamic susceptibility contrast (DSC)
title Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
title_full Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
title_fullStr Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
title_full_unstemmed Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
title_short Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI
title_sort sinusoidal co2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity mri
topic brain perfusion
respiratory challenges
cerebrovascular reactivity (CVR)
carbon dioxide challenge
deoxygenation
dynamic susceptibility contrast (DSC)
url https://www.frontiersin.org/articles/10.3389/fphys.2023.1102983/full
work_keys_str_mv AT chauvu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT chauvu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT botianxu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT botianxu sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT cliogonzalezzacarias sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT cliogonzalezzacarias sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT cliogonzalezzacarias sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT jianshen sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT jianshen sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT koenpabaas sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT soyoungchoi sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT soyoungchoi sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT soyoungchoi sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT aartjnederveen sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT johncwood sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri
AT johncwood sinusoidalco2respiratorychallengeforconcurrentperfusionandcerebrovascularreactivitymri