Real-time fMRI data for testing OpenNFT functionality

Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants...

Full description

Bibliographic Details
Main Authors: Yury Koush, John Ashburner, Evgeny Prilepin, Ronald Sladky, Peter Zeidman, Sergei Bibikov, Frank Scharnowski, Artem Nikonorov, Dimitri Van De Ville
Format: Article
Language:English
Published: Elsevier 2017-10-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340917303517
_version_ 1818440960857604096
author Yury Koush
John Ashburner
Evgeny Prilepin
Ronald Sladky
Peter Zeidman
Sergei Bibikov
Frank Scharnowski
Artem Nikonorov
Dimitri Van De Ville
author_facet Yury Koush
John Ashburner
Evgeny Prilepin
Ronald Sladky
Peter Zeidman
Sergei Bibikov
Frank Scharnowski
Artem Nikonorov
Dimitri Van De Ville
author_sort Yury Koush
collection DOAJ
description Here, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases.
first_indexed 2024-12-14T18:20:40Z
format Article
id doaj.art-759d4945e9be431ea1e62975232eeadf
institution Directory Open Access Journal
issn 2352-3409
language English
last_indexed 2024-12-14T18:20:40Z
publishDate 2017-10-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj.art-759d4945e9be431ea1e62975232eeadf2022-12-21T22:52:05ZengElsevierData in Brief2352-34092017-10-0114C34434710.1016/j.dib.2017.07.049Real-time fMRI data for testing OpenNFT functionalityYury Koush0John Ashburner1Evgeny Prilepin2Ronald Sladky3Peter Zeidman4Sergei Bibikov5Frank Scharnowski6Artem Nikonorov7Dimitri Van De Ville8Department of Radiology and Medical Imaging, Yale University, New Haven, USAWellcome Trust Centre for Neuroimaging, University College London, London, UKAligned Research Group, 20  S Santa Cruz Ave 300, 95030 Los Gatos, CA, USADepartment of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, 8032 Zürich, SwitzerlandWellcome Trust Centre for Neuroimaging, University College London, London, UKSupercomputers and Computer Science Department, Samara National Research University, Moskovskoe shosse str., 34, 443086 Samara, RussiaDepartment of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Lenggstrasse 31, 8032 Zürich, SwitzerlandAligned Research Group, 20  S Santa Cruz Ave 300, 95030 Los Gatos, CA, USAInstitute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, SwitzerlandHere, we briefly describe the real-time fMRI data that is provided for testing the functionality of the open-source Python/Matlab framework for neurofeedback, termed Open NeuroFeedback Training (OpenNFT, Koush et al. [1]). The data set contains real-time fMRI runs from three anonymized participants (i.e., one neurofeedback run per participant), their structural scans and pre-selected ROIs/masks/weights. The data allows for simulating the neurofeedback experiment without an MR scanner, exploring the software functionality, and measuring data processing times on the local hardware. In accordance with the descriptions in our main article, we provide data of (1) periodically displayed (intermittent) activation-based feedback; (2) intermittent effective connectivity feedback, based on dynamic causal modeling (DCM) estimations; and (3) continuous classification-based feedback based on support-vector-machine (SVM) estimations. The data is available on our public GitHub repository: https://github.com/OpenNFT/OpenNFT_Demo/releases.http://www.sciencedirect.com/science/article/pii/S2352340917303517OpenNFTNeurofeedbackReal-time fMRIActivityConnectivityMultivariate pattern analysis
spellingShingle Yury Koush
John Ashburner
Evgeny Prilepin
Ronald Sladky
Peter Zeidman
Sergei Bibikov
Frank Scharnowski
Artem Nikonorov
Dimitri Van De Ville
Real-time fMRI data for testing OpenNFT functionality
Data in Brief
OpenNFT
Neurofeedback
Real-time fMRI
Activity
Connectivity
Multivariate pattern analysis
title Real-time fMRI data for testing OpenNFT functionality
title_full Real-time fMRI data for testing OpenNFT functionality
title_fullStr Real-time fMRI data for testing OpenNFT functionality
title_full_unstemmed Real-time fMRI data for testing OpenNFT functionality
title_short Real-time fMRI data for testing OpenNFT functionality
title_sort real time fmri data for testing opennft functionality
topic OpenNFT
Neurofeedback
Real-time fMRI
Activity
Connectivity
Multivariate pattern analysis
url http://www.sciencedirect.com/science/article/pii/S2352340917303517
work_keys_str_mv AT yurykoush realtimefmridatafortestingopennftfunctionality
AT johnashburner realtimefmridatafortestingopennftfunctionality
AT evgenyprilepin realtimefmridatafortestingopennftfunctionality
AT ronaldsladky realtimefmridatafortestingopennftfunctionality
AT peterzeidman realtimefmridatafortestingopennftfunctionality
AT sergeibibikov realtimefmridatafortestingopennftfunctionality
AT frankscharnowski realtimefmridatafortestingopennftfunctionality
AT artemnikonorov realtimefmridatafortestingopennftfunctionality
AT dimitrivandeville realtimefmridatafortestingopennftfunctionality