Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility...

Full description

Bibliographic Details
Main Authors: Daniel Lenk, Vladimir I. Zdravkov, Jan-Michael Kehrle, Günter Obermeier, Aladin Ullrich, Roman Morari, Hans-Albrecht Krug von Nidda, Claus Müller, Mikhail Yu. Kupriyanov, Anatolie S. Sidorenko, Siegfried Horn, Rafael G. Deminov, Lenar R. Tagirov, Reinhard Tidecks
Format: Article
Language:English
Published: Beilstein-Institut 2016-07-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.7.88
_version_ 1828531983250096128
author Daniel Lenk
Vladimir I. Zdravkov
Jan-Michael Kehrle
Günter Obermeier
Aladin Ullrich
Roman Morari
Hans-Albrecht Krug von Nidda
Claus Müller
Mikhail Yu. Kupriyanov
Anatolie S. Sidorenko
Siegfried Horn
Rafael G. Deminov
Lenar R. Tagirov
Reinhard Tidecks
author_facet Daniel Lenk
Vladimir I. Zdravkov
Jan-Michael Kehrle
Günter Obermeier
Aladin Ullrich
Roman Morari
Hans-Albrecht Krug von Nidda
Claus Müller
Mikhail Yu. Kupriyanov
Anatolie S. Sidorenko
Siegfried Horn
Rafael G. Deminov
Lenar R. Tagirov
Reinhard Tidecks
author_sort Daniel Lenk
collection DOAJ
description Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment.Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory.Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for dF1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1.
first_indexed 2024-12-11T22:46:43Z
format Article
id doaj.art-75a870c0de834e32aca144e4756b2c54
institution Directory Open Access Journal
issn 2190-4286
language English
last_indexed 2024-12-11T22:46:43Z
publishDate 2016-07-01
publisher Beilstein-Institut
record_format Article
series Beilstein Journal of Nanotechnology
spelling doaj.art-75a870c0de834e32aca144e4756b2c542022-12-22T00:47:35ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862016-07-017195796910.3762/bjnano.7.882190-4286-7-88Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructuresDaniel Lenk0Vladimir I. Zdravkov1Jan-Michael Kehrle2Günter Obermeier3Aladin Ullrich4Roman Morari5Hans-Albrecht Krug von Nidda6Claus Müller7Mikhail Yu. Kupriyanov8Anatolie S. Sidorenko9Siegfried Horn10Rafael G. Deminov11Lenar R. Tagirov12Reinhard Tidecks13Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanySolid State Physics Department, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russian FederationD. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev, MoldovaInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanySolid State Physics Department, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russian FederationInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyBackground: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment.Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory.Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for dF1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1.https://doi.org/10.3762/bjnano.7.88heterostructuressuperconducting spin valvethin filmstriplet superconductivity
spellingShingle Daniel Lenk
Vladimir I. Zdravkov
Jan-Michael Kehrle
Günter Obermeier
Aladin Ullrich
Roman Morari
Hans-Albrecht Krug von Nidda
Claus Müller
Mikhail Yu. Kupriyanov
Anatolie S. Sidorenko
Siegfried Horn
Rafael G. Deminov
Lenar R. Tagirov
Reinhard Tidecks
Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
Beilstein Journal of Nanotechnology
heterostructures
superconducting spin valve
thin films
triplet superconductivity
title Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
title_full Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
title_fullStr Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
title_full_unstemmed Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
title_short Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
title_sort thickness dependence of the triplet spin valve effect in superconductor ferromagnet ferromagnet heterostructures
topic heterostructures
superconducting spin valve
thin films
triplet superconductivity
url https://doi.org/10.3762/bjnano.7.88
work_keys_str_mv AT daniellenk thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT vladimirizdravkov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT janmichaelkehrle thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT gunterobermeier thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT aladinullrich thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT romanmorari thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT hansalbrechtkrugvonnidda thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT clausmuller thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT mikhailyukupriyanov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT anatoliessidorenko thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT siegfriedhorn thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT rafaelgdeminov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT lenarrtagirov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures
AT reinhardtidecks thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures