Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures
Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Beilstein-Institut
2016-07-01
|
Series: | Beilstein Journal of Nanotechnology |
Subjects: | |
Online Access: | https://doi.org/10.3762/bjnano.7.88 |
_version_ | 1828531983250096128 |
---|---|
author | Daniel Lenk Vladimir I. Zdravkov Jan-Michael Kehrle Günter Obermeier Aladin Ullrich Roman Morari Hans-Albrecht Krug von Nidda Claus Müller Mikhail Yu. Kupriyanov Anatolie S. Sidorenko Siegfried Horn Rafael G. Deminov Lenar R. Tagirov Reinhard Tidecks |
author_facet | Daniel Lenk Vladimir I. Zdravkov Jan-Michael Kehrle Günter Obermeier Aladin Ullrich Roman Morari Hans-Albrecht Krug von Nidda Claus Müller Mikhail Yu. Kupriyanov Anatolie S. Sidorenko Siegfried Horn Rafael G. Deminov Lenar R. Tagirov Reinhard Tidecks |
author_sort | Daniel Lenk |
collection | DOAJ |
description | Background: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment.Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory.Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for dF1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1. |
first_indexed | 2024-12-11T22:46:43Z |
format | Article |
id | doaj.art-75a870c0de834e32aca144e4756b2c54 |
institution | Directory Open Access Journal |
issn | 2190-4286 |
language | English |
last_indexed | 2024-12-11T22:46:43Z |
publishDate | 2016-07-01 |
publisher | Beilstein-Institut |
record_format | Article |
series | Beilstein Journal of Nanotechnology |
spelling | doaj.art-75a870c0de834e32aca144e4756b2c542022-12-22T00:47:35ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862016-07-017195796910.3762/bjnano.7.882190-4286-7-88Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructuresDaniel Lenk0Vladimir I. Zdravkov1Jan-Michael Kehrle2Günter Obermeier3Aladin Ullrich4Roman Morari5Hans-Albrecht Krug von Nidda6Claus Müller7Mikhail Yu. Kupriyanov8Anatolie S. Sidorenko9Siegfried Horn10Rafael G. Deminov11Lenar R. Tagirov12Reinhard Tidecks13Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanySolid State Physics Department, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russian FederationD. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev, MoldovaInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanySolid State Physics Department, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russian FederationInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyInstitut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, GermanyBackground: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature Tc, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment.Results: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoOx an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoOx and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, dF1, of F1 and was found to decay with increasing dF1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory.Conclusion: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance dF1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for dF1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1.https://doi.org/10.3762/bjnano.7.88heterostructuressuperconducting spin valvethin filmstriplet superconductivity |
spellingShingle | Daniel Lenk Vladimir I. Zdravkov Jan-Michael Kehrle Günter Obermeier Aladin Ullrich Roman Morari Hans-Albrecht Krug von Nidda Claus Müller Mikhail Yu. Kupriyanov Anatolie S. Sidorenko Siegfried Horn Rafael G. Deminov Lenar R. Tagirov Reinhard Tidecks Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures Beilstein Journal of Nanotechnology heterostructures superconducting spin valve thin films triplet superconductivity |
title | Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures |
title_full | Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures |
title_fullStr | Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures |
title_full_unstemmed | Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures |
title_short | Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures |
title_sort | thickness dependence of the triplet spin valve effect in superconductor ferromagnet ferromagnet heterostructures |
topic | heterostructures superconducting spin valve thin films triplet superconductivity |
url | https://doi.org/10.3762/bjnano.7.88 |
work_keys_str_mv | AT daniellenk thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT vladimirizdravkov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT janmichaelkehrle thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT gunterobermeier thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT aladinullrich thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT romanmorari thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT hansalbrechtkrugvonnidda thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT clausmuller thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT mikhailyukupriyanov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT anatoliessidorenko thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT siegfriedhorn thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT rafaelgdeminov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT lenarrtagirov thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures AT reinhardtidecks thicknessdependenceofthetripletspinvalveeffectinsuperconductorferromagnetferromagnetheterostructures |