Study of laser ablation using nano-second laser pulses
In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Isfahan University of Technology
2019-06-01
|
Series: | Iranian Journal of Physics Research |
Subjects: | |
Online Access: | http://ijpr.iut.ac.ir/browse.php?a_code=A-10-3079-1&slc_lang=en&sid=1 |
_version_ | 1818572020930052096 |
---|---|
author | S Namvar A R Ganjovi M A Bassam |
author_facet | S Namvar A R Ganjovi M A Bassam |
author_sort | S Namvar |
collection | DOAJ |
description | In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model is used and, the numerical results show that, if the ionization and laser absorption processes in plasma plume are considered, the plume dynamics is strongly affected. It is seen that, the ionization at the copper surface will be increased during the laser pulses irradiation. On the other hand, the ionization degree for both the copper and helium is significantly varied according to their atomic structure. Moreover, for laser intensity in the range of 108 to 5×109W/cm2, the laser ablation is not occurred. The laser ablation threshold is about 5×109W/cm2. The first order ionization for copper is the dominant process in the proximity of both the target surface and mixed layer. On the other hand, in the plasma core, the second order ionization of copper is dominant. Besides, it is shown that, in the proximity of the target surface, the influences of photoionization and reverse Bremsstrahlung absorption for the electron-neutral are higher. In addition, the target parameters, including melt depth, evaporation depth and rate, plasma density, helium gas density, expansion velocity, plasma temperature and laser intensity reaching the copper target surface are studied. |
first_indexed | 2024-12-14T18:51:52Z |
format | Article |
id | doaj.art-75afc626a8c744c3ad3f5cf354a37688 |
institution | Directory Open Access Journal |
issn | 1682-6957 2345-3664 |
language | English |
last_indexed | 2024-12-14T18:51:52Z |
publishDate | 2019-06-01 |
publisher | Isfahan University of Technology |
record_format | Article |
series | Iranian Journal of Physics Research |
spelling | doaj.art-75afc626a8c744c3ad3f5cf354a376882022-12-21T22:51:13ZengIsfahan University of TechnologyIranian Journal of Physics Research1682-69572345-36642019-06-011917588Study of laser ablation using nano-second laser pulsesS Namvar0A R Ganjovi1M A Bassam2 1. Laser Research Department, Photonics Research Institute, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran 1. Laser Research Department, Photonics Research Institute, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran Malek Ashtar University of Technology, Tehran, Iran In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model is used and, the numerical results show that, if the ionization and laser absorption processes in plasma plume are considered, the plume dynamics is strongly affected. It is seen that, the ionization at the copper surface will be increased during the laser pulses irradiation. On the other hand, the ionization degree for both the copper and helium is significantly varied according to their atomic structure. Moreover, for laser intensity in the range of 108 to 5×109W/cm2, the laser ablation is not occurred. The laser ablation threshold is about 5×109W/cm2. The first order ionization for copper is the dominant process in the proximity of both the target surface and mixed layer. On the other hand, in the plasma core, the second order ionization of copper is dominant. Besides, it is shown that, in the proximity of the target surface, the influences of photoionization and reverse Bremsstrahlung absorption for the electron-neutral are higher. In addition, the target parameters, including melt depth, evaporation depth and rate, plasma density, helium gas density, expansion velocity, plasma temperature and laser intensity reaching the copper target surface are studied.http://ijpr.iut.ac.ir/browse.php?a_code=A-10-3079-1&slc_lang=en&sid=1laser ablationplasma plume expansion- laser irradiancephotoionizationreverse Bremsstrahlung absorption |
spellingShingle | S Namvar A R Ganjovi M A Bassam Study of laser ablation using nano-second laser pulses Iranian Journal of Physics Research laser ablation plasma plume expansion- laser irradiance photoionization reverse Bremsstrahlung absorption |
title | Study of laser ablation using nano-second laser pulses |
title_full | Study of laser ablation using nano-second laser pulses |
title_fullStr | Study of laser ablation using nano-second laser pulses |
title_full_unstemmed | Study of laser ablation using nano-second laser pulses |
title_short | Study of laser ablation using nano-second laser pulses |
title_sort | study of laser ablation using nano second laser pulses |
topic | laser ablation plasma plume expansion- laser irradiance photoionization reverse Bremsstrahlung absorption |
url | http://ijpr.iut.ac.ir/browse.php?a_code=A-10-3079-1&slc_lang=en&sid=1 |
work_keys_str_mv | AT snamvar studyoflaserablationusingnanosecondlaserpulses AT arganjovi studyoflaserablationusingnanosecondlaserpulses AT mabassam studyoflaserablationusingnanosecondlaserpulses |