Radial growth of the derivatives of analytic functions in Besov spaces

For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], f...

Full description

Bibliographic Details
Main Authors: Domínguez Salvador, Girela Daniel
Format: Article
Language:English
Published: De Gruyter 2020-12-01
Series:Concrete Operators
Subjects:
Online Access:https://doi.org/10.1515/conop-2020-0107
_version_ 1819093810575048704
author Domínguez Salvador
Girela Daniel
author_facet Domínguez Salvador
Girela Daniel
author_sort Domínguez Salvador
collection DOAJ
description For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.
first_indexed 2024-12-21T23:17:26Z
format Article
id doaj.art-75d4de55695544a1bbfe4268f57ac0cf
institution Directory Open Access Journal
issn 2299-3282
language English
last_indexed 2024-12-21T23:17:26Z
publishDate 2020-12-01
publisher De Gruyter
record_format Article
series Concrete Operators
spelling doaj.art-75d4de55695544a1bbfe4268f57ac0cf2022-12-21T18:46:53ZengDe GruyterConcrete Operators2299-32822020-12-018111210.1515/conop-2020-0107conop-2020-0107Radial growth of the derivatives of analytic functions in Besov spacesDomínguez Salvador0Girela Daniel1Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071Málaga, SpainAnálisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071Málaga, SpainFor 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.https://doi.org/10.1515/conop-2020-0107besov spacesradial behaviourmultipliers30h2547b38
spellingShingle Domínguez Salvador
Girela Daniel
Radial growth of the derivatives of analytic functions in Besov spaces
Concrete Operators
besov spaces
radial behaviour
multipliers
30h25
47b38
title Radial growth of the derivatives of analytic functions in Besov spaces
title_full Radial growth of the derivatives of analytic functions in Besov spaces
title_fullStr Radial growth of the derivatives of analytic functions in Besov spaces
title_full_unstemmed Radial growth of the derivatives of analytic functions in Besov spaces
title_short Radial growth of the derivatives of analytic functions in Besov spaces
title_sort radial growth of the derivatives of analytic functions in besov spaces
topic besov spaces
radial behaviour
multipliers
30h25
47b38
url https://doi.org/10.1515/conop-2020-0107
work_keys_str_mv AT dominguezsalvador radialgrowthofthederivativesofanalyticfunctionsinbesovspaces
AT gireladaniel radialgrowthofthederivativesofanalyticfunctionsinbesovspaces