Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?

Abstract Background Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these nove...

Full description

Bibliographic Details
Main Authors: Jente Willaert, Aijse Willem De Vries, Julie Tavernier, Jaap H. Van Dieen, Ilse Jonkers, Sabine Verschueren
Format: Article
Language:English
Published: BMC 2020-01-01
Series:Journal of NeuroEngineering and Rehabilitation
Subjects:
Online Access:https://doi.org/10.1186/s12984-019-0628-3
_version_ 1818668430274854912
author Jente Willaert
Aijse Willem De Vries
Julie Tavernier
Jaap H. Van Dieen
Ilse Jonkers
Sabine Verschueren
author_facet Jente Willaert
Aijse Willem De Vries
Julie Tavernier
Jaap H. Van Dieen
Ilse Jonkers
Sabine Verschueren
author_sort Jente Willaert
collection DOAJ
description Abstract Background Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these novel exergames as training tool for elderly and, more specifically whether these games can elicit more challenging weight shifts and higher levels of muscle activity compared to existing off-the-shelf exergames. Furthermore, the motivational pull in these new games was studied. Methods Sixteen healthy older adults were recruited to play the novel games and two reference games that were found to be the most challenging ones in terms of weight shifts or muscle activity in previous studies. Weight shifts were expressed relative to participants’ Functional Limits of Stability (FLOS). Muscular challenge of the games was quantified by dividing the signal into 200 ms blocks and determining the average muscle activity within these blocks. The muscle activity was normalized to maximal voluntary contractions (MVC) to categorize the blocks in zones of < 40, 40–60, 60–80 and > 80% MVC. Subsequently, the number of blocks per intensity level and the number of consecutive blocks above 40% were determined. Motivation to play the games was assessed using the Intrinsic Motivation Inventory (IMI) and scores between the games were analyzed using Generalized Estimated Equations (GEE). Results The novel exergames successfully elicited center of mass (COM) displacements with medians of around 80% of FLOS or higher for all directions. Furthermore, the COM displacements in the novel games were larger for each direction than in the reference games, although for one game the sideward left direction reached significance only at the third trial. Compared to the existing games, longer blocks of muscle activation above 40% MVC were found, but overall intensity remained low. IMI scores were high on all subscales, indicating that older adults experienced the games as motivating. Conclusion We conclude that affordable hardware can be used to create challenging and enjoyable balance training programs using exergames. The exergames that were successful in eliciting challenging weight shifts and muscle activity should now be further studied in longitudinal randomized controlled interventions, to assess effects on balance, muscle strength and eventually fall risk in healthy older adults.
first_indexed 2024-12-17T06:36:11Z
format Article
id doaj.art-75e59be70c6041abace187ff5fd567b4
institution Directory Open Access Journal
issn 1743-0003
language English
last_indexed 2024-12-17T06:36:11Z
publishDate 2020-01-01
publisher BMC
record_format Article
series Journal of NeuroEngineering and Rehabilitation
spelling doaj.art-75e59be70c6041abace187ff5fd567b42022-12-21T22:00:00ZengBMCJournal of NeuroEngineering and Rehabilitation1743-00032020-01-0117111310.1186/s12984-019-0628-3Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?Jente Willaert0Aijse Willem De Vries1Julie Tavernier2Jaap H. Van Dieen3Ilse Jonkers4Sabine Verschueren5KU Leuven (Faculteit bewegings- en revalidatiewetenschappen)KU Leuven (Faculteit bewegings- en revalidatiewetenschappen)KU Leuven (Faculteit bewegings- en revalidatiewetenschappen)Vrije Universiteit Amsterdam (Faculteit gedrags- en bewegingswetenschappen)KU Leuven (Faculteit bewegings- en revalidatiewetenschappen)KU Leuven (Faculteit bewegings- en revalidatiewetenschappen)Abstract Background Novel balance-targeting exergames controlled with off-the-shelf hardware, were developed based on current recommendations for balance training in healthy older adults and documented shortcomings of existing games. The aim of this study was to explore the feasibility of these novel exergames as training tool for elderly and, more specifically whether these games can elicit more challenging weight shifts and higher levels of muscle activity compared to existing off-the-shelf exergames. Furthermore, the motivational pull in these new games was studied. Methods Sixteen healthy older adults were recruited to play the novel games and two reference games that were found to be the most challenging ones in terms of weight shifts or muscle activity in previous studies. Weight shifts were expressed relative to participants’ Functional Limits of Stability (FLOS). Muscular challenge of the games was quantified by dividing the signal into 200 ms blocks and determining the average muscle activity within these blocks. The muscle activity was normalized to maximal voluntary contractions (MVC) to categorize the blocks in zones of < 40, 40–60, 60–80 and > 80% MVC. Subsequently, the number of blocks per intensity level and the number of consecutive blocks above 40% were determined. Motivation to play the games was assessed using the Intrinsic Motivation Inventory (IMI) and scores between the games were analyzed using Generalized Estimated Equations (GEE). Results The novel exergames successfully elicited center of mass (COM) displacements with medians of around 80% of FLOS or higher for all directions. Furthermore, the COM displacements in the novel games were larger for each direction than in the reference games, although for one game the sideward left direction reached significance only at the third trial. Compared to the existing games, longer blocks of muscle activation above 40% MVC were found, but overall intensity remained low. IMI scores were high on all subscales, indicating that older adults experienced the games as motivating. Conclusion We conclude that affordable hardware can be used to create challenging and enjoyable balance training programs using exergames. The exergames that were successful in eliciting challenging weight shifts and muscle activity should now be further studied in longitudinal randomized controlled interventions, to assess effects on balance, muscle strength and eventually fall risk in healthy older adults.https://doi.org/10.1186/s12984-019-0628-3ExergamesBalanceElderlyFall prevention
spellingShingle Jente Willaert
Aijse Willem De Vries
Julie Tavernier
Jaap H. Van Dieen
Ilse Jonkers
Sabine Verschueren
Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
Journal of NeuroEngineering and Rehabilitation
Exergames
Balance
Elderly
Fall prevention
title Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
title_full Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
title_fullStr Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
title_full_unstemmed Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
title_short Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames?
title_sort does a novel exergame challenge balance and activate muscles more than existing off the shelf exergames
topic Exergames
Balance
Elderly
Fall prevention
url https://doi.org/10.1186/s12984-019-0628-3
work_keys_str_mv AT jentewillaert doesanovelexergamechallengebalanceandactivatemusclesmorethanexistingofftheshelfexergames
AT aijsewillemdevries doesanovelexergamechallengebalanceandactivatemusclesmorethanexistingofftheshelfexergames
AT julietavernier doesanovelexergamechallengebalanceandactivatemusclesmorethanexistingofftheshelfexergames
AT jaaphvandieen doesanovelexergamechallengebalanceandactivatemusclesmorethanexistingofftheshelfexergames
AT ilsejonkers doesanovelexergamechallengebalanceandactivatemusclesmorethanexistingofftheshelfexergames
AT sabineverschueren doesanovelexergamechallengebalanceandactivatemusclesmorethanexistingofftheshelfexergames