Summary: | Titanium nitride thin films were grown on Si(001) and fused silica substrates by radio frequency reactive magnetron sputtering. Post-growth annealing of the films was performed at different temperatures from 300 °C to 700 °C in nitrogen ambient. Films annealed at temperatures above 300 °C exhibit higher surface roughness, smaller grain size and better crystallinity compared to the as-grown film. Bandgap of the films decreased with the increase in the annealing temperature. Hall effect measurements revealed that all the films exhibit n-type conductivity and had high carrier concentration, which also increased slightly with the increase in the annealing temperature. A detailed depth profile study of the chemical composition of the film was performed by x-ray photoelectron spectroscopy confirming the formation of Ti-N bond and revealing the presence of chemisorbed oxygen in the films. Annealing in nitrogen ambient results in increased nitrogen vacancies and non-stoichiometric TiN films.
|