Summary: | Climate change is exerting profound impacts on the structure and function of global boreal forest. Compared with their northern counterparts, trees growing at the southern boreal forest and the temperate-boreal forest ecotone likely show distinct responses to climate change. Based on annual basal areal increment (BAI) of Dahurian larch (<i>Larix gmelinii</i> Rupr.) plantations with similar ages, tree densities and soil nutrient conditions, we investigated the tree growth responses to inter-annual climate variations at an Asian temperate-boreal forest ecotone and nearby boreal sites in northeast China. Annual BAI changed nonlinearly with cambial age in the form of a lognormal curve. The maximum annual BAI showed no significant difference between the two bioregions, while annual BAI peaked at an elder age at the boreal-temperate forest ecotone. After eliminating the age associated trend, conditional regression analyses indicate that residual BAI at the boreal sites increased significantly with higher growing-season mean nighttime minimum temperature and non-growing-season precipitation, but decreased significantly with higher growing-season mean daytime maximum temperature during the past three decades (1985–2015). In contrast, residual BAI at the boreal-temperate forest ecotone only showed a positive and weak response to inter-annual variations of growing-season precipitation. These findings suggest distinct effects of inter-annual climate variation on the growth of boreal trees at the temperate-boreal forest ecotone in comparison to the southern boreal regions, and highlight future efforts to elucidate the key factors that regulate the growth ofthe southernmost boreal trees.
|