A Microfluidic PET-Based Electrochemical Glucose Sensor

Paper-based microfluidic sensors have gained increased attention in the field of analytical assays in recent years due to their self-driven nature, ease of preparation, high integration, low reagent consumption, and low cost. However, paper-based microfluidic sensors still have many deficiencies whe...

Full description

Bibliographic Details
Main Authors: Linda Yang, Zheng Zhang, Xin Wang
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/4/552
Description
Summary:Paper-based microfluidic sensors have gained increased attention in the field of analytical assays in recent years due to their self-driven nature, ease of preparation, high integration, low reagent consumption, and low cost. However, paper-based microfluidic sensors still have many deficiencies when it comes to the detection of some specific detectors such as blood glucose. For example, the processing procedure for microfluidic channels is tedious, the sensor electrodes are easily damaged by bending, and they can only be used as disposable products. To solve the above problems, a PET-based microfluidic sensor was proposed in this paper, the performance of which was tested with glucose as the target detector. The experimental results showed that the analytical performance of this sensor is comparable to that of existing commercial glucose meters. This work provides implications for the substrate selection of microfluidic chips for some biochemical analyses.
ISSN:2072-666X