Summary: | Abstract The polarization properties of asymmetric plasmonic nanostructures originating from optical anisotropy show great application prospects in many fields, such as display, sensing, filtering, and detection. Here, we report the realization of polarization control in the deep ultraviolet (UV) region using Al nano-dimer structures. The simulation results indicated that the polarization effect was generated by the modulation of inter-coupling between the quadrupole plasmon resonances of the asymmetric dimer. By further optimizing the size and gap of the dimer, the extinction in the 200-nm deep UV region obtained a polarization ratio of 18%. This research is helpful for understanding the resonance hybridization of high-order surface plasmons in UV region and is of great significance to the emerging polarized micro-nano photonics fields, such as spin optoelectronics and deep UV optoelectronic devices. Graphical Abstract
|