Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function
The main aim of this article is to study an extension of the Beta and Gamma matrix functions by using a two-parameter Mittag-Leffler matrix function. In particular, we investigate certain properties of these extended matrix functions such as symmetric relation, integral representations, summation re...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/6/892 |
_version_ | 1827628122184351744 |
---|---|
author | Rahul Goyal Praveen Agarwal Georgia Irina Oros Shilpi Jain |
author_facet | Rahul Goyal Praveen Agarwal Georgia Irina Oros Shilpi Jain |
author_sort | Rahul Goyal |
collection | DOAJ |
description | The main aim of this article is to study an extension of the Beta and Gamma matrix functions by using a two-parameter Mittag-Leffler matrix function. In particular, we investigate certain properties of these extended matrix functions such as symmetric relation, integral representations, summation relations, generating relation and functional relation. |
first_indexed | 2024-03-09T13:26:20Z |
format | Article |
id | doaj.art-7633b4bfd973430f822080cbcfe35ac0 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-09T13:26:20Z |
publishDate | 2022-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-7633b4bfd973430f822080cbcfe35ac02023-11-30T21:23:38ZengMDPI AGMathematics2227-73902022-03-0110689210.3390/math10060892Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix FunctionRahul Goyal0Praveen Agarwal1Georgia Irina Oros2Shilpi Jain3Department of Mathematics, Anand International College of Engineering, Jaipur 303012, IndiaDepartment of Mathematics, Anand International College of Engineering, Jaipur 303012, IndiaDepartment of Mathematics and Computer Science, Faculty of Informatics and Sciences, University of Oradea, 1 Universității Str., 410087 Oradea, RomaniaDepartment of Mathematics, Poornima College of Engineering, Jaipur 302022, IndiaThe main aim of this article is to study an extension of the Beta and Gamma matrix functions by using a two-parameter Mittag-Leffler matrix function. In particular, we investigate certain properties of these extended matrix functions such as symmetric relation, integral representations, summation relations, generating relation and functional relation.https://www.mdpi.com/2227-7390/10/6/892matrix functional calculusMittag-Leffler matrix functionGamma matrix functionBeta matrix function |
spellingShingle | Rahul Goyal Praveen Agarwal Georgia Irina Oros Shilpi Jain Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function Mathematics matrix functional calculus Mittag-Leffler matrix function Gamma matrix function Beta matrix function |
title | Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function |
title_full | Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function |
title_fullStr | Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function |
title_full_unstemmed | Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function |
title_short | Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function |
title_sort | extended beta and gamma matrix functions via 2 parameter mittag leffler matrix function |
topic | matrix functional calculus Mittag-Leffler matrix function Gamma matrix function Beta matrix function |
url | https://www.mdpi.com/2227-7390/10/6/892 |
work_keys_str_mv | AT rahulgoyal extendedbetaandgammamatrixfunctionsvia2parametermittaglefflermatrixfunction AT praveenagarwal extendedbetaandgammamatrixfunctionsvia2parametermittaglefflermatrixfunction AT georgiairinaoros extendedbetaandgammamatrixfunctionsvia2parametermittaglefflermatrixfunction AT shilpijain extendedbetaandgammamatrixfunctionsvia2parametermittaglefflermatrixfunction |