Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space

The visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder co...

Full description

Bibliographic Details
Main Authors: Verónica Mieites, José A. Gutiérrez-Gutiérrez, José M. López-Higuera, Olga M. Conde
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/1/155
_version_ 1827384927852691456
author Verónica Mieites
José A. Gutiérrez-Gutiérrez
José M. López-Higuera
Olga M. Conde
author_facet Verónica Mieites
José A. Gutiérrez-Gutiérrez
José M. López-Higuera
Olga M. Conde
author_sort Verónica Mieites
collection DOAJ
description The visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder comparisons. Our aim was to introduce a visualization technique that utilizes the hue (H), saturation (S), and value (V) in a single image to convey multi-parametric data on various optical properties in an effective manner. To achieve this, we conducted a study involving two datasets, one comprising multi-modality measurements of the human aorta and the other featuring multiple parameters of dystrophic mice muscles. Through this analysis, we determined that H is best suited to emphasize differences related to pathology, while V highlights high-spatial-resolution data disparities, and color alterations effectively indicate changes in chemical component concentrations. Furthermore, encoding structural information as S and V within the same image assists in pinpointing the specific locations of these variations. In cases where all data are of a high resolution, H remains the optimal indicator of pathology, ensuring results’ interpretability. This approach simplifies the selection of an appropriate colormap and enhances the ability to grasp a sample’s characteristics at a single glance.
first_indexed 2024-03-08T15:12:25Z
format Article
id doaj.art-7633dd2c83144a13932416b1e1f2b2c1
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-08T15:12:25Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-7633dd2c83144a13932416b1e1f2b2c12024-01-10T14:51:08ZengMDPI AGApplied Sciences2076-34172023-12-0114115510.3390/app14010155Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color SpaceVerónica Mieites0José A. Gutiérrez-Gutiérrez1José M. López-Higuera2Olga M. Conde3Grupo de Ingeniería Fotónica, Universidad de Cantabria, Avenida Los Castros S/N, 39006 Santander, SpainGrupo de Ingeniería Fotónica, Universidad de Cantabria, Avenida Los Castros S/N, 39006 Santander, SpainGrupo de Ingeniería Fotónica, Universidad de Cantabria, Avenida Los Castros S/N, 39006 Santander, SpainGrupo de Ingeniería Fotónica, Universidad de Cantabria, Avenida Los Castros S/N, 39006 Santander, SpainThe visualization of 2D clinical data often relies on color-coded images, but different colormaps can introduce cognitive biases, impacting result interpretation. Moreover, when using color for diagnosis with multiple biomarkers, the application of distinct colormaps for each parameter can hinder comparisons. Our aim was to introduce a visualization technique that utilizes the hue (H), saturation (S), and value (V) in a single image to convey multi-parametric data on various optical properties in an effective manner. To achieve this, we conducted a study involving two datasets, one comprising multi-modality measurements of the human aorta and the other featuring multiple parameters of dystrophic mice muscles. Through this analysis, we determined that H is best suited to emphasize differences related to pathology, while V highlights high-spatial-resolution data disparities, and color alterations effectively indicate changes in chemical component concentrations. Furthermore, encoding structural information as S and V within the same image assists in pinpointing the specific locations of these variations. In cases where all data are of a high resolution, H remains the optimal indicator of pathology, ensuring results’ interpretability. This approach simplifies the selection of an appropriate colormap and enhances the ability to grasp a sample’s characteristics at a single glance.https://www.mdpi.com/2076-3417/14/1/155HSV color spaceoptical propertiesstructurechemical compositionoptical coherence tomographyhyperspectral imaging
spellingShingle Verónica Mieites
José A. Gutiérrez-Gutiérrez
José M. López-Higuera
Olga M. Conde
Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
Applied Sciences
HSV color space
optical properties
structure
chemical composition
optical coherence tomography
hyperspectral imaging
title Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
title_full Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
title_fullStr Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
title_full_unstemmed Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
title_short Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
title_sort single image multi parametric representation of optical properties through encodings to the hsv color space
topic HSV color space
optical properties
structure
chemical composition
optical coherence tomography
hyperspectral imaging
url https://www.mdpi.com/2076-3417/14/1/155
work_keys_str_mv AT veronicamieites singleimagemultiparametricrepresentationofopticalpropertiesthroughencodingstothehsvcolorspace
AT joseagutierrezgutierrez singleimagemultiparametricrepresentationofopticalpropertiesthroughencodingstothehsvcolorspace
AT josemlopezhiguera singleimagemultiparametricrepresentationofopticalpropertiesthroughencodingstothehsvcolorspace
AT olgamconde singleimagemultiparametricrepresentationofopticalpropertiesthroughencodingstothehsvcolorspace