Sufficient and Necessary Conditions for Oscillation of <inline-formula> <graphic file="1029-242X-2009-892936-i1.gif"/></inline-formula>th-Order Differential Equation with Retarded Argument
<p/> <p>Necessary and sufficient conditions are found for oscillation of the solutions of a class of strongly superlinear and strongly sublinear differential equations of even order with retarded argument.</p>
Main Authors: | Chu Yu-ming, Cheng Jin-fa |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2009/892936 |
Similar Items
-
The <inline-formula><graphic file="1029-242X-1999-408192-i1.gif"/></inline-formula>-function in the space <inline-formula><graphic file="1029-242X-1999-408192-i2.gif"/></inline-formula>
by: Choi Yun Sung, et al.
Published: (1999-01-01) -
Multivariate Twisted <inline-formula> <graphic file="1029-242X-2010-579509-i1.gif"/></inline-formula>-Adic <inline-formula> <graphic file="1029-242X-2010-579509-i2.gif"/></inline-formula>-Integral on <inline-formula> <graphic file="1029-242X-2010-579509-i3.gif"/></inline-formula> Associated with Twisted <inline-formula> <graphic file="1029-242X-2010-579509-i4.gif"/></inline-formula>-Bernoulli Polynomials and Numbers
by: Rim Seog-Hoon, et al.
Published: (2010-01-01) -
Certain Integral Operators on the Classes <inline-formula> <graphic file="1029-242X-2008-719354-i1.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2008-719354-i2.gif"/></inline-formula>
by: Breaz Daniel
Published: (2008-01-01) -
On Convergence of <inline-formula> <graphic file="1029-242X-2009-170526-i1.gif"/></inline-formula>-Series Involving <inline-formula> <graphic file="1029-242X-2009-170526-i2.gif"/></inline-formula> Basic Hypergeometric Series
by: Zhao Xilai, et al.
Published: (2009-01-01) -
On the Distribution of the <inline-formula> <graphic file="1029-242X-2008-723615-i1.gif"/></inline-formula>-Euler Polynomials and the <inline-formula> <graphic file="1029-242X-2008-723615-i2.gif"/></inline-formula>-Genocchi Polynomials of Higher Order
by: Kim Taekyun, et al.
Published: (2008-01-01)