Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum

This paper addresses the problem concerning the efficient minimization of power losses in asymmetric distribution grids from the perspective of convex optimization. This research’s main objective is to propose an approximation optimization model to reduce the total power losses in a three-phase netw...

Full description

Bibliographic Details
Main Authors: Daniela Patricia Bohórquez-Álvarez, Karen Dayanna Niño-Perdomo, Oscar Danilo Montoya
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/14/4/229
_version_ 1797605019352039424
author Daniela Patricia Bohórquez-Álvarez
Karen Dayanna Niño-Perdomo
Oscar Danilo Montoya
author_facet Daniela Patricia Bohórquez-Álvarez
Karen Dayanna Niño-Perdomo
Oscar Danilo Montoya
author_sort Daniela Patricia Bohórquez-Álvarez
collection DOAJ
description This paper addresses the problem concerning the efficient minimization of power losses in asymmetric distribution grids from the perspective of convex optimization. This research’s main objective is to propose an approximation optimization model to reduce the total power losses in a three-phase network using the concept of electrical momentum. To obtain a mixed-integer convex formulation, the voltage variables at each node are relaxed by assuming them to be equal to those at the substation bus. With this assumption, the power balance constraints are reduced to flow restrictions, allowing us to formulate a set of linear rules. The objective function is formulated as a strictly convex objective function by applying the concept of average electrical momentum, by representing the current flows in distribution lines as the active and reactive power variables. To solve the relaxed MIQC model, the GAMS software (Version 28.1.2) and its CPLEX, SBB, and XPRESS solvers are used. In order to validate the effectiveness of load redistribution in power loss minimization, the initial and final grid configurations are tested with the triangular-based power flow method for asymmetric distribution networks. Numerical results show that the proposed mixed-integer model allows for reductions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24.34</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>18.64</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.14</mn><mo>%</mo></mrow></semantics></math></inline-formula> for the 8-, 15-, and 25-node test feeders, respectively, in comparison with the benchmark case. The sine–cosine algorithm and the black hole optimization method are also used for comparison, demonstrating the efficiency of the MIQC approach in minimizing the expected grid power losses for three-phase unbalanced networks.
first_indexed 2024-03-11T04:55:10Z
format Article
id doaj.art-767074b6de104c57a2b7bacdbaca93a3
institution Directory Open Access Journal
issn 2078-2489
language English
last_indexed 2024-03-11T04:55:10Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Information
spelling doaj.art-767074b6de104c57a2b7bacdbaca93a32023-11-17T19:44:31ZengMDPI AGInformation2078-24892023-04-0114422910.3390/info14040229Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical MomentumDaniela Patricia Bohórquez-Álvarez0Karen Dayanna Niño-Perdomo1Oscar Danilo Montoya2Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, 110231 Bogotá, ColombiaGrupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, 110231 Bogotá, ColombiaGrupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, 110231 Bogotá, ColombiaThis paper addresses the problem concerning the efficient minimization of power losses in asymmetric distribution grids from the perspective of convex optimization. This research’s main objective is to propose an approximation optimization model to reduce the total power losses in a three-phase network using the concept of electrical momentum. To obtain a mixed-integer convex formulation, the voltage variables at each node are relaxed by assuming them to be equal to those at the substation bus. With this assumption, the power balance constraints are reduced to flow restrictions, allowing us to formulate a set of linear rules. The objective function is formulated as a strictly convex objective function by applying the concept of average electrical momentum, by representing the current flows in distribution lines as the active and reactive power variables. To solve the relaxed MIQC model, the GAMS software (Version 28.1.2) and its CPLEX, SBB, and XPRESS solvers are used. In order to validate the effectiveness of load redistribution in power loss minimization, the initial and final grid configurations are tested with the triangular-based power flow method for asymmetric distribution networks. Numerical results show that the proposed mixed-integer model allows for reductions of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>24.34</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>18.64</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.14</mn><mo>%</mo></mrow></semantics></math></inline-formula> for the 8-, 15-, and 25-node test feeders, respectively, in comparison with the benchmark case. The sine–cosine algorithm and the black hole optimization method are also used for comparison, demonstrating the efficiency of the MIQC approach in minimizing the expected grid power losses for three-phase unbalanced networks.https://www.mdpi.com/2078-2489/14/4/229active power losseselectrical momentummixed-integer convex modelphase-balancingradial asymmetric distribution systems
spellingShingle Daniela Patricia Bohórquez-Álvarez
Karen Dayanna Niño-Perdomo
Oscar Danilo Montoya
Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum
Information
active power losses
electrical momentum
mixed-integer convex model
phase-balancing
radial asymmetric distribution systems
title Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum
title_full Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum
title_fullStr Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum
title_full_unstemmed Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum
title_short Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum
title_sort optimal load redistribution in distribution systems using a mixed integer convex model based on electrical momentum
topic active power losses
electrical momentum
mixed-integer convex model
phase-balancing
radial asymmetric distribution systems
url https://www.mdpi.com/2078-2489/14/4/229
work_keys_str_mv AT danielapatriciabohorquezalvarez optimalloadredistributionindistributionsystemsusingamixedintegerconvexmodelbasedonelectricalmomentum
AT karendayannaninoperdomo optimalloadredistributionindistributionsystemsusingamixedintegerconvexmodelbasedonelectricalmomentum
AT oscardanilomontoya optimalloadredistributionindistributionsystemsusingamixedintegerconvexmodelbasedonelectricalmomentum