Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator

The aim of this paper is to establish the existence and multiplicity of solutions for a class of nonlocal problem involving the p(x)-biharmonic operator. Our technical approach is based on direct variational method and the theory of variable exponent Sobolev spaces.

Bibliographic Details
Main Author: Omar Darhouche
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2019-04-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/32100
_version_ 1828293556711718912
author Omar Darhouche
author_facet Omar Darhouche
author_sort Omar Darhouche
collection DOAJ
description The aim of this paper is to establish the existence and multiplicity of solutions for a class of nonlocal problem involving the p(x)-biharmonic operator. Our technical approach is based on direct variational method and the theory of variable exponent Sobolev spaces.
first_indexed 2024-04-13T11:24:27Z
format Article
id doaj.art-76774a902f6149229e8f344806940613
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-04-13T11:24:27Z
publishDate 2019-04-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-76774a902f6149229e8f3448069406132022-12-22T02:48:44ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882019-04-01372233310.5269/bspm.v37i2.3210015898Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operatorOmar Darhouche0University Mohamed I Department of MathematicsThe aim of this paper is to establish the existence and multiplicity of solutions for a class of nonlocal problem involving the p(x)-biharmonic operator. Our technical approach is based on direct variational method and the theory of variable exponent Sobolev spaces.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/32100Variational methodMountain pass theoremp(x)-Biharmonic OperatorKirchho type equationNonlocal problemNavier boundary conditionsgeneralized Lebesgue-Sobolev spaces
spellingShingle Omar Darhouche
Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator
Boletim da Sociedade Paranaense de Matemática
Variational method
Mountain pass theorem
p(x)-Biharmonic Operator
Kirchho type equation
Nonlocal problem
Navier boundary conditions
generalized Lebesgue-Sobolev spaces
title Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator
title_full Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator
title_fullStr Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator
title_full_unstemmed Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator
title_short Existence and multiplicity results for a class of Kirchho type problems involving the p(x)-biharmonic operator
title_sort existence and multiplicity results for a class of kirchho type problems involving the p x biharmonic operator
topic Variational method
Mountain pass theorem
p(x)-Biharmonic Operator
Kirchho type equation
Nonlocal problem
Navier boundary conditions
generalized Lebesgue-Sobolev spaces
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/32100
work_keys_str_mv AT omardarhouche existenceandmultiplicityresultsforaclassofkirchhotypeproblemsinvolvingthepxbiharmonicoperator