Bihomomorphisms and biderivations in Lie Banach algebras

In this paper, we solve the following bi-additive $s$-functional inequality<br /> $\begin{array}{*{20}{c}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left\| {f(x - y,y + z) + f\left( {y + z,z - x} \right) + f\left( {z + x,x - z} \right) - f\left( {x - y,x + y} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\...

Full description

Bibliographic Details
Main Authors: Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park
Format: Article
Language:English
Published: AIMS Press 2020-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020145/fulltext.html
_version_ 1818096732470247424
author Tae Hun Kim
Ha Nuel Ju
Hong Nyeong Kim
Seong Yoon Jo
Choonkil Park
author_facet Tae Hun Kim
Ha Nuel Ju
Hong Nyeong Kim
Seong Yoon Jo
Choonkil Park
author_sort Tae Hun Kim
collection DOAJ
description In this paper, we solve the following bi-additive $s$-functional inequality<br /> $\begin{array}{*{20}{c}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left\| {f(x - y,y + z) + f\left( {y + z,z - x} \right) + f\left( {z + x,x - z} \right) - f\left( {x - y,x + y} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {0.1} \right)} \right.}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{ \le \left\| {s\left( {f\left( {y - z,z + x} \right) + f\left( {z + x,x - y} \right) + f\left( {x + y,y - x} \right) - f\left( {y - z,y + z} \right)} \right)} \right\|,}\end{array}$<br /> where $s$ is a fixed nonzero complex number satisfying $|s|&lt;1$. Furthermore, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive $s$-functional inequality (0.1).
first_indexed 2024-12-10T23:09:18Z
format Article
id doaj.art-767f60c5460249099978b712517f316b
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-10T23:09:18Z
publishDate 2020-02-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-767f60c5460249099978b712517f316b2022-12-22T01:29:59ZengAIMS PressAIMS Mathematics2473-69882020-02-01532196221010.3934/math.2020145Bihomomorphisms and biderivations in Lie Banach algebrasTae Hun Kim0Ha Nuel Ju1Hong Nyeong Kim2Seong Yoon Jo3Choonkil Park41 Mathematics Branch, Seoul Science High School, Seoul 03066, Korea1 Mathematics Branch, Seoul Science High School, Seoul 03066, Korea1 Mathematics Branch, Seoul Science High School, Seoul 03066, Korea1 Mathematics Branch, Seoul Science High School, Seoul 03066, Korea2 Research Institute for Natural Sciences, Hanyang University, Seoul 04763, KoreaIn this paper, we solve the following bi-additive $s$-functional inequality<br /> $\begin{array}{*{20}{c}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left\| {f(x - y,y + z) + f\left( {y + z,z - x} \right) + f\left( {z + x,x - z} \right) - f\left( {x - y,x + y} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {0.1} \right)} \right.}\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{ \le \left\| {s\left( {f\left( {y - z,z + x} \right) + f\left( {z + x,x - y} \right) + f\left( {x + y,y - x} \right) - f\left( {y - z,y + z} \right)} \right)} \right\|,}\end{array}$<br /> where $s$ is a fixed nonzero complex number satisfying $|s|&lt;1$. Furthermore, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive $s$-functional inequality (0.1).https://www.aimspress.com/article/10.3934/math.2020145/fulltext.htmlhyers-ulam stabilitybi-additive s-functional inequalitylie banach algebrabihomomorphismbiderivation
spellingShingle Tae Hun Kim
Ha Nuel Ju
Hong Nyeong Kim
Seong Yoon Jo
Choonkil Park
Bihomomorphisms and biderivations in Lie Banach algebras
AIMS Mathematics
hyers-ulam stability
bi-additive s-functional inequality
lie banach algebra
bihomomorphism
biderivation
title Bihomomorphisms and biderivations in Lie Banach algebras
title_full Bihomomorphisms and biderivations in Lie Banach algebras
title_fullStr Bihomomorphisms and biderivations in Lie Banach algebras
title_full_unstemmed Bihomomorphisms and biderivations in Lie Banach algebras
title_short Bihomomorphisms and biderivations in Lie Banach algebras
title_sort bihomomorphisms and biderivations in lie banach algebras
topic hyers-ulam stability
bi-additive s-functional inequality
lie banach algebra
bihomomorphism
biderivation
url https://www.aimspress.com/article/10.3934/math.2020145/fulltext.html
work_keys_str_mv AT taehunkim bihomomorphismsandbiderivationsinliebanachalgebras
AT hanuelju bihomomorphismsandbiderivationsinliebanachalgebras
AT hongnyeongkim bihomomorphismsandbiderivationsinliebanachalgebras
AT seongyoonjo bihomomorphismsandbiderivationsinliebanachalgebras
AT choonkilpark bihomomorphismsandbiderivationsinliebanachalgebras