Existence of renormalized solutions for some quasilinear elliptic Neumann problems

This paper is devoted to study some nonlinear elliptic Neumann equations of the type{Au+g(x,u,∇u)+|u|q(⋅)-2u=f(x,u,∇u)inΩ,∑i=1Nai(x,u,∇u)⋅ni=0on∂Ω,\left\{ {\matrix{ {Au + g(x,u,\nabla u) + |u{|^{q( \cdot ) - 2}}u = f(x,u,\nabla u)} \hfill & {{\rm{in}}} \hfill & {\Omega ,} \hfill \cr {\...

Full description

Bibliographic Details
Main Authors: Benboubker Mohamed Badr, Hjiaj Hassane, Ibrango Idrissa, Ouaro Stanislas
Format: Article
Language:English
Published: De Gruyter 2021-08-01
Series:Nonautonomous Dynamical Systems
Subjects:
Online Access:https://doi.org/10.1515/msds-2020-0133
_version_ 1818322747023949824
author Benboubker Mohamed Badr
Hjiaj Hassane
Ibrango Idrissa
Ouaro Stanislas
author_facet Benboubker Mohamed Badr
Hjiaj Hassane
Ibrango Idrissa
Ouaro Stanislas
author_sort Benboubker Mohamed Badr
collection DOAJ
description This paper is devoted to study some nonlinear elliptic Neumann equations of the type{Au+g(x,u,∇u)+|u|q(⋅)-2u=f(x,u,∇u)inΩ,∑i=1Nai(x,u,∇u)⋅ni=0on∂Ω,\left\{ {\matrix{ {Au + g(x,u,\nabla u) + |u{|^{q( \cdot ) - 2}}u = f(x,u,\nabla u)} \hfill & {{\rm{in}}} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{a_i}(x,u,\nabla u) \cdot {n_i} = 0} } \hfill & {{\rm{on}}} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces, where A is a Leray-Lions operator and g(x, u, ∇u), f (x, u, ∇u) are two Carathéodory functions that verify some growth conditions. We prove the existence of renormalized solutions for our strongly nonlinear elliptic Neumann problem.
first_indexed 2024-12-13T11:01:42Z
format Article
id doaj.art-76816fc6f9d54ec9947112a92b13f407
institution Directory Open Access Journal
issn 2353-0626
language English
last_indexed 2024-12-13T11:01:42Z
publishDate 2021-08-01
publisher De Gruyter
record_format Article
series Nonautonomous Dynamical Systems
spelling doaj.art-76816fc6f9d54ec9947112a92b13f4072022-12-21T23:49:13ZengDe GruyterNonautonomous Dynamical Systems2353-06262021-08-018118020610.1515/msds-2020-0133Existence of renormalized solutions for some quasilinear elliptic Neumann problemsBenboubker Mohamed Badr0Hjiaj Hassane1Ibrango Idrissa2Ouaro Stanislas3Ecole Nationale des Sciences Appliquées (ENSA), Université Abdelmalek Essaadi, B.P 2222 M’hannech Tétouan, MarocDépartement de Mathématiques, Faculté des Sciences de Tétouan, Université Abdelmalek Essaadi, B.P. 2121, Tétouan, MarocLAboratoire de Mathématiques et Informatique (LAMI), UFR. Sciences et Techniques, Université Polytechnique de Bobo-Dioulasso, 01 BP 1091 Bobo 01, Bobo-Dioulasso, Burkina FasoLAboratoire de Mathématiques et Informatique (LAMI), UFR. Sciences Exactes et Appliquées, Université de Ouagadougou, 03 BP 7021 Ouaga 03, Ouagadougou, Burkina FasoThis paper is devoted to study some nonlinear elliptic Neumann equations of the type{Au+g(x,u,∇u)+|u|q(⋅)-2u=f(x,u,∇u)inΩ,∑i=1Nai(x,u,∇u)⋅ni=0on∂Ω,\left\{ {\matrix{ {Au + g(x,u,\nabla u) + |u{|^{q( \cdot ) - 2}}u = f(x,u,\nabla u)} \hfill & {{\rm{in}}} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{a_i}(x,u,\nabla u) \cdot {n_i} = 0} } \hfill & {{\rm{on}}} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces, where A is a Leray-Lions operator and g(x, u, ∇u), f (x, u, ∇u) are two Carathéodory functions that verify some growth conditions. We prove the existence of renormalized solutions for our strongly nonlinear elliptic Neumann problem.https://doi.org/10.1515/msds-2020-0133renormalized solutionstrongly nonlinear elliptic equationsanisotropic variable exponent sobolev spacesneumann problem35j6035d05
spellingShingle Benboubker Mohamed Badr
Hjiaj Hassane
Ibrango Idrissa
Ouaro Stanislas
Existence of renormalized solutions for some quasilinear elliptic Neumann problems
Nonautonomous Dynamical Systems
renormalized solution
strongly nonlinear elliptic equations
anisotropic variable exponent sobolev spaces
neumann problem
35j60
35d05
title Existence of renormalized solutions for some quasilinear elliptic Neumann problems
title_full Existence of renormalized solutions for some quasilinear elliptic Neumann problems
title_fullStr Existence of renormalized solutions for some quasilinear elliptic Neumann problems
title_full_unstemmed Existence of renormalized solutions for some quasilinear elliptic Neumann problems
title_short Existence of renormalized solutions for some quasilinear elliptic Neumann problems
title_sort existence of renormalized solutions for some quasilinear elliptic neumann problems
topic renormalized solution
strongly nonlinear elliptic equations
anisotropic variable exponent sobolev spaces
neumann problem
35j60
35d05
url https://doi.org/10.1515/msds-2020-0133
work_keys_str_mv AT benboubkermohamedbadr existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems
AT hjiajhassane existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems
AT ibrangoidrissa existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems
AT ouarostanislas existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems