Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю

При математичному описаннi рiзного роду процесiв i явищ в електронiцi, радiотехнiцi, економiцi, бiологiї часто приходять до необхiдностi дослiдження вироджених систем диференцiальних рiвнянь, зокрема, систем з виродженою матрицею при похiднiй. Частина науковцiв називає такi системи диференцiально-ал...

Full description

Bibliographic Details
Main Authors: I. I. Король, Р. М. Блажiвська
Format: Article
Language:English
Published: State University “Uzhhorod National University” 2020-11-01
Series:Науковий вісник Ужгородського університету. Серія: Математика і інформатика
Subjects:
Online Access:http://visnyk-math.uzhnu.edu.ua/article/view/217199
_version_ 1818359357695328256
author I. I. Король
Р. М. Блажiвська
author_facet I. I. Король
Р. М. Блажiвська
author_sort I. I. Король
collection DOAJ
description При математичному описаннi рiзного роду процесiв i явищ в електронiцi, радiотехнiцi, економiцi, бiологiї часто приходять до необхiдностi дослiдження вироджених систем диференцiальних рiвнянь, зокрема, систем з виродженою матрицею при похiднiй. Частина науковцiв називає такi системи диференцiально-алгебраїчними. Вони вирiзняються складнiстю при дослiдженнях, оскiльки навiть у випадку лiнiйних систем i неперервних функцiй задача Кошi може не мати розв’язкiв. У лiнiйному випадку для дослiдження таких систем розроблено низку методiв - за допомогою досконалих пар i трiйок матриць, псевдообернених за Муром-Пенроузом матриць та шляхом зведення до центральної канонiчної форми. Суттєво складнiшою є проблема встановлення конструктивних достатнiх умов iснування та розробка i обгрунтування методiв побудови розв’язкiв задачi Кошi для нелiнiйних систем з виродженою матрицею при похiднiй. Бiльшiсть науковцiв використовують для цього модифiкацiї рiзного роду числових методiв. Суттєво складнiшою є задача розробки методiв наближеного iнтегрування крайових задач для таких систем. Важливою є проблема розробки методiв побудови розв’язкiв задачi Кошi для нелiнiйних систем з виродженою матрицею при похiднiй. Бiльшiсть науковцiв використовують для цього модифiкацiї рiзного роду числових методiв. Суттєво складнiшою є проблема встановлення конструктивних достатнiх умов iснування та розробка i обгрунтування методiв наближеного iнтегрування крайових задач для таких систем. Свою ефективнiсть для дослiдження надзвичайно широкого класу крайових задач показав чисельно-аналiтичний метод А.М.Самойленка. Останнiм часом розроблено його модифiкацiї для наближеного iнтегрування крайових задач для нелiнiйних систем звичайних диференцiальних рiвнянь з виродженою матрицею при похiднiй. У данiй роботi використовується апарат псевдообернених за Муром-Пенрозуом матриць та ортопроекторiв. Запропоновано модифiкацiю чисельно-аналiтичного методу з метою розширення його використання на дослiдження iснування та наближену побудову розв’язкiв нелiнiйних диференцiальних систем з виродженою матрицею при похiднiй, якi пiддаються iмпульсному впливу i пiдпорядкованi лiнiйним нероздiленим двоточковим крайовим обмеженням. Розглянуто критичний випадок - коли вiдповiдна лiнiйна однорiдна вироджена крайова задача має ненульовi розв’язки. Встановлено необхiднi та конструктивнi достатнi умови iснування розв’язкiв, знайдено оцiнки похибки побудованих наближених розв’язкiв.
first_indexed 2024-12-13T20:43:37Z
format Article
id doaj.art-768334a59d3f437984d8abd40369c887
institution Directory Open Access Journal
issn 2616-7700
language English
last_indexed 2024-12-13T20:43:37Z
publishDate 2020-11-01
publisher State University “Uzhhorod National University”
record_format Article
series Науковий вісник Ужгородського університету. Серія: Математика і інформатика
spelling doaj.art-768334a59d3f437984d8abd40369c8872022-12-21T23:32:04ZengState University “Uzhhorod National University”Науковий вісник Ужгородського університету. Серія: Математика і інформатика2616-77002020-11-01237667410.24144/2616-7700.2020.2(37).66-74204789Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєюI. I. Король0https://orcid.org/0000-0001-7826-0249Р. М. Блажiвська1https://orcid.org/0000-0003-2557-533XДВНЗ "Ужгородський національний університет"Ужгородський нацiональний унiверситетПри математичному описаннi рiзного роду процесiв i явищ в електронiцi, радiотехнiцi, економiцi, бiологiї часто приходять до необхiдностi дослiдження вироджених систем диференцiальних рiвнянь, зокрема, систем з виродженою матрицею при похiднiй. Частина науковцiв називає такi системи диференцiально-алгебраїчними. Вони вирiзняються складнiстю при дослiдженнях, оскiльки навiть у випадку лiнiйних систем i неперервних функцiй задача Кошi може не мати розв’язкiв. У лiнiйному випадку для дослiдження таких систем розроблено низку методiв - за допомогою досконалих пар i трiйок матриць, псевдообернених за Муром-Пенроузом матриць та шляхом зведення до центральної канонiчної форми. Суттєво складнiшою є проблема встановлення конструктивних достатнiх умов iснування та розробка i обгрунтування методiв побудови розв’язкiв задачi Кошi для нелiнiйних систем з виродженою матрицею при похiднiй. Бiльшiсть науковцiв використовують для цього модифiкацiї рiзного роду числових методiв. Суттєво складнiшою є задача розробки методiв наближеного iнтегрування крайових задач для таких систем. Важливою є проблема розробки методiв побудови розв’язкiв задачi Кошi для нелiнiйних систем з виродженою матрицею при похiднiй. Бiльшiсть науковцiв використовують для цього модифiкацiї рiзного роду числових методiв. Суттєво складнiшою є проблема встановлення конструктивних достатнiх умов iснування та розробка i обгрунтування методiв наближеного iнтегрування крайових задач для таких систем. Свою ефективнiсть для дослiдження надзвичайно широкого класу крайових задач показав чисельно-аналiтичний метод А.М.Самойленка. Останнiм часом розроблено його модифiкацiї для наближеного iнтегрування крайових задач для нелiнiйних систем звичайних диференцiальних рiвнянь з виродженою матрицею при похiднiй. У данiй роботi використовується апарат псевдообернених за Муром-Пенрозуом матриць та ортопроекторiв. Запропоновано модифiкацiю чисельно-аналiтичного методу з метою розширення його використання на дослiдження iснування та наближену побудову розв’язкiв нелiнiйних диференцiальних систем з виродженою матрицею при похiднiй, якi пiддаються iмпульсному впливу i пiдпорядкованi лiнiйним нероздiленим двоточковим крайовим обмеженням. Розглянуто критичний випадок - коли вiдповiдна лiнiйна однорiдна вироджена крайова задача має ненульовi розв’язки. Встановлено необхiднi та конструктивнi достатнi умови iснування розв’язкiв, знайдено оцiнки похибки побудованих наближених розв’язкiв.http://visnyk-math.uzhnu.edu.ua/article/view/217199крайова задачавиродженi диференцiальнi системиiмпульсна дiя.
spellingShingle I. I. Король
Р. М. Блажiвська
Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
Науковий вісник Ужгородського університету. Серія: Математика і інформатика
крайова задача
виродженi диференцiальнi системи
iмпульсна дiя.
title Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
title_full Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
title_fullStr Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
title_full_unstemmed Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
title_short Iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
title_sort iнтегрування двоточкової крайової задачi для вироджених диференцiальних систем з iмпульсною дiєю
topic крайова задача
виродженi диференцiальнi системи
iмпульсна дiя.
url http://visnyk-math.uzhnu.edu.ua/article/view/217199
work_keys_str_mv AT iikorolʹ integruvannâdvotočkovoíkrajovoízadačidlâvirodženihdiferencialʹnihsistemzimpulʹsnoûdiêû
AT rmblaživsʹka integruvannâdvotočkovoíkrajovoízadačidlâvirodženihdiferencialʹnihsistemzimpulʹsnoûdiêû