QC-LDPC Codes From Difference Matrices and Difference Covering Arrays

We give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of ord...

Full description

Bibliographic Details
Main Authors: Diane M. Donovan, Asha Rao, Elif Uskuplu, E. Sule Yazici
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10131907/
_version_ 1797812872844148736
author Diane M. Donovan
Asha Rao
Elif Uskuplu
E. Sule Yazici
author_facet Diane M. Donovan
Asha Rao
Elif Uskuplu
E. Sule Yazici
author_sort Diane M. Donovan
collection DOAJ
description We give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of order a power of a prime, which significantly restricts the functionality of the resulting codes. In contrast, the LDPC codes constructed here are based on difference matrices and difference covering arrays, structures that are available for any order <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, resulting in LDPC codes across a broader class of parameters, notably length <inline-formula> <tex-math notation="LaTeX">$a(a-1)$ </tex-math></inline-formula>, for all even <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>. Such values are not possible with earlier constructions, thus establishing the novelty of these new constructions. Specifically the codes constructed here satisfy the RC constraint and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> odd, have length <inline-formula> <tex-math notation="LaTeX">$a^{2}$ </tex-math></inline-formula> and rate <inline-formula> <tex-math notation="LaTeX">$1-(4a-3)/a^{2}$ </tex-math></inline-formula>, and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> even, length <inline-formula> <tex-math notation="LaTeX">$a^{2}-a$ </tex-math></inline-formula> and rate at least <inline-formula> <tex-math notation="LaTeX">$1-(4a-6)/(a^{2}-a)$ </tex-math></inline-formula>. When 3 does not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, these LDPC codes have stopping distance at least 8. When <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> is odd and both 3 and 5 do not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, our construction delivers an infinite family of QC-LDPC codes with minimum distance at least 10. We also determine lower bounds for the stopping distance of the code. Further we include simulation results illustrating the performance of our codes. The BER and FER performance of our codes over AWGN (via simulation) is at least equivalent to codes constructed previously.
first_indexed 2024-03-13T07:44:54Z
format Article
id doaj.art-7692e0f63afa47b194e87e8ffdd234ba
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-13T07:44:54Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-7692e0f63afa47b194e87e8ffdd234ba2023-06-02T23:00:31ZengIEEEIEEE Access2169-35362023-01-0111521415215710.1109/ACCESS.2023.327932710131907QC-LDPC Codes From Difference Matrices and Difference Covering ArraysDiane M. Donovan0https://orcid.org/0000-0002-1329-3514Asha Rao1https://orcid.org/0000-0001-6222-282XElif Uskuplu2https://orcid.org/0000-0003-3836-7193E. Sule Yazici3https://orcid.org/0000-0001-6824-451XThe Centre for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, AustraliaSchool of Science (Mathematical Sciences), RMIT University, Melbourne, VIC, AustraliaDepartment of Mathematics, University of Southern California, University Park Campus, Los Angeles, CA, USAMathematics Department, Ko&#x00E7; University, Istanbul, TurkeyWe give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of order a power of a prime, which significantly restricts the functionality of the resulting codes. In contrast, the LDPC codes constructed here are based on difference matrices and difference covering arrays, structures that are available for any order <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, resulting in LDPC codes across a broader class of parameters, notably length <inline-formula> <tex-math notation="LaTeX">$a(a-1)$ </tex-math></inline-formula>, for all even <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>. Such values are not possible with earlier constructions, thus establishing the novelty of these new constructions. Specifically the codes constructed here satisfy the RC constraint and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> odd, have length <inline-formula> <tex-math notation="LaTeX">$a^{2}$ </tex-math></inline-formula> and rate <inline-formula> <tex-math notation="LaTeX">$1-(4a-3)/a^{2}$ </tex-math></inline-formula>, and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> even, length <inline-formula> <tex-math notation="LaTeX">$a^{2}-a$ </tex-math></inline-formula> and rate at least <inline-formula> <tex-math notation="LaTeX">$1-(4a-6)/(a^{2}-a)$ </tex-math></inline-formula>. When 3 does not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, these LDPC codes have stopping distance at least 8. When <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> is odd and both 3 and 5 do not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, our construction delivers an infinite family of QC-LDPC codes with minimum distance at least 10. We also determine lower bounds for the stopping distance of the code. Further we include simulation results illustrating the performance of our codes. The BER and FER performance of our codes over AWGN (via simulation) is at least equivalent to codes constructed previously.https://ieeexplore.ieee.org/document/10131907/LDPC codesQC-LDPC codescombinatorial constructionsdifference matricesdifference covering arrays
spellingShingle Diane M. Donovan
Asha Rao
Elif Uskuplu
E. Sule Yazici
QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
IEEE Access
LDPC codes
QC-LDPC codes
combinatorial constructions
difference matrices
difference covering arrays
title QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
title_full QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
title_fullStr QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
title_full_unstemmed QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
title_short QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
title_sort qc ldpc codes from difference matrices and difference covering arrays
topic LDPC codes
QC-LDPC codes
combinatorial constructions
difference matrices
difference covering arrays
url https://ieeexplore.ieee.org/document/10131907/
work_keys_str_mv AT dianemdonovan qcldpccodesfromdifferencematricesanddifferencecoveringarrays
AT asharao qcldpccodesfromdifferencematricesanddifferencecoveringarrays
AT elifuskuplu qcldpccodesfromdifferencematricesanddifferencecoveringarrays
AT esuleyazici qcldpccodesfromdifferencematricesanddifferencecoveringarrays