QC-LDPC Codes From Difference Matrices and Difference Covering Arrays
We give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of ord...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10131907/ |
_version_ | 1797812872844148736 |
---|---|
author | Diane M. Donovan Asha Rao Elif Uskuplu E. Sule Yazici |
author_facet | Diane M. Donovan Asha Rao Elif Uskuplu E. Sule Yazici |
author_sort | Diane M. Donovan |
collection | DOAJ |
description | We give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of order a power of a prime, which significantly restricts the functionality of the resulting codes. In contrast, the LDPC codes constructed here are based on difference matrices and difference covering arrays, structures that are available for any order <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, resulting in LDPC codes across a broader class of parameters, notably length <inline-formula> <tex-math notation="LaTeX">$a(a-1)$ </tex-math></inline-formula>, for all even <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>. Such values are not possible with earlier constructions, thus establishing the novelty of these new constructions. Specifically the codes constructed here satisfy the RC constraint and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> odd, have length <inline-formula> <tex-math notation="LaTeX">$a^{2}$ </tex-math></inline-formula> and rate <inline-formula> <tex-math notation="LaTeX">$1-(4a-3)/a^{2}$ </tex-math></inline-formula>, and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> even, length <inline-formula> <tex-math notation="LaTeX">$a^{2}-a$ </tex-math></inline-formula> and rate at least <inline-formula> <tex-math notation="LaTeX">$1-(4a-6)/(a^{2}-a)$ </tex-math></inline-formula>. When 3 does not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, these LDPC codes have stopping distance at least 8. When <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> is odd and both 3 and 5 do not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, our construction delivers an infinite family of QC-LDPC codes with minimum distance at least 10. We also determine lower bounds for the stopping distance of the code. Further we include simulation results illustrating the performance of our codes. The BER and FER performance of our codes over AWGN (via simulation) is at least equivalent to codes constructed previously. |
first_indexed | 2024-03-13T07:44:54Z |
format | Article |
id | doaj.art-7692e0f63afa47b194e87e8ffdd234ba |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-03-13T07:44:54Z |
publishDate | 2023-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-7692e0f63afa47b194e87e8ffdd234ba2023-06-02T23:00:31ZengIEEEIEEE Access2169-35362023-01-0111521415215710.1109/ACCESS.2023.327932710131907QC-LDPC Codes From Difference Matrices and Difference Covering ArraysDiane M. Donovan0https://orcid.org/0000-0002-1329-3514Asha Rao1https://orcid.org/0000-0001-6222-282XElif Uskuplu2https://orcid.org/0000-0003-3836-7193E. Sule Yazici3https://orcid.org/0000-0001-6824-451XThe Centre for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, AustraliaSchool of Science (Mathematical Sciences), RMIT University, Melbourne, VIC, AustraliaDepartment of Mathematics, University of Southern California, University Park Campus, Los Angeles, CA, USAMathematics Department, Koç University, Istanbul, TurkeyWe give a framework that generalizes LDPC code constructions using transversal designs or related structures such as mutually orthogonal Latin squares. Our constructions offer a broader range of code lengths and codes rates. Similar earlier constructions rely on the existence of finite fields of order a power of a prime, which significantly restricts the functionality of the resulting codes. In contrast, the LDPC codes constructed here are based on difference matrices and difference covering arrays, structures that are available for any order <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, resulting in LDPC codes across a broader class of parameters, notably length <inline-formula> <tex-math notation="LaTeX">$a(a-1)$ </tex-math></inline-formula>, for all even <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>. Such values are not possible with earlier constructions, thus establishing the novelty of these new constructions. Specifically the codes constructed here satisfy the RC constraint and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> odd, have length <inline-formula> <tex-math notation="LaTeX">$a^{2}$ </tex-math></inline-formula> and rate <inline-formula> <tex-math notation="LaTeX">$1-(4a-3)/a^{2}$ </tex-math></inline-formula>, and for <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> even, length <inline-formula> <tex-math notation="LaTeX">$a^{2}-a$ </tex-math></inline-formula> and rate at least <inline-formula> <tex-math notation="LaTeX">$1-(4a-6)/(a^{2}-a)$ </tex-math></inline-formula>. When 3 does not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, these LDPC codes have stopping distance at least 8. When <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> is odd and both 3 and 5 do not divide <inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>, our construction delivers an infinite family of QC-LDPC codes with minimum distance at least 10. We also determine lower bounds for the stopping distance of the code. Further we include simulation results illustrating the performance of our codes. The BER and FER performance of our codes over AWGN (via simulation) is at least equivalent to codes constructed previously.https://ieeexplore.ieee.org/document/10131907/LDPC codesQC-LDPC codescombinatorial constructionsdifference matricesdifference covering arrays |
spellingShingle | Diane M. Donovan Asha Rao Elif Uskuplu E. Sule Yazici QC-LDPC Codes From Difference Matrices and Difference Covering Arrays IEEE Access LDPC codes QC-LDPC codes combinatorial constructions difference matrices difference covering arrays |
title | QC-LDPC Codes From Difference Matrices and Difference Covering Arrays |
title_full | QC-LDPC Codes From Difference Matrices and Difference Covering Arrays |
title_fullStr | QC-LDPC Codes From Difference Matrices and Difference Covering Arrays |
title_full_unstemmed | QC-LDPC Codes From Difference Matrices and Difference Covering Arrays |
title_short | QC-LDPC Codes From Difference Matrices and Difference Covering Arrays |
title_sort | qc ldpc codes from difference matrices and difference covering arrays |
topic | LDPC codes QC-LDPC codes combinatorial constructions difference matrices difference covering arrays |
url | https://ieeexplore.ieee.org/document/10131907/ |
work_keys_str_mv | AT dianemdonovan qcldpccodesfromdifferencematricesanddifferencecoveringarrays AT asharao qcldpccodesfromdifferencematricesanddifferencecoveringarrays AT elifuskuplu qcldpccodesfromdifferencematricesanddifferencecoveringarrays AT esuleyazici qcldpccodesfromdifferencematricesanddifferencecoveringarrays |