Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces

Abstract This paper deals with the existence results of the infinite system of tempered fractional BVPs D r ϱ , λ 0 R z j ( r ) + ψ j ( r , z ( r ) ) = 0 , 0 < r < 1 , z j ( 0 ) = 0 , 0 R D r m , λ z j ( 0 ) = 0 , b 1 z j ( 1 ) + b 2 0 R D r m , λ z j ( 1 ) = 0 , $$\begin{aligned}& {}^{\ma...

Full description

Bibliographic Details
Main Authors: Sabbavarapu Nageswara Rao, Mahammad Khuddush, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini
Format: Article
Language:English
Published: SpringerOpen 2024-02-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-024-01826-6
_version_ 1797273818930085888
author Sabbavarapu Nageswara Rao
Mahammad Khuddush
Ahmed Hussein Msmali
Abdullah Ali H. Ahmadini
author_facet Sabbavarapu Nageswara Rao
Mahammad Khuddush
Ahmed Hussein Msmali
Abdullah Ali H. Ahmadini
author_sort Sabbavarapu Nageswara Rao
collection DOAJ
description Abstract This paper deals with the existence results of the infinite system of tempered fractional BVPs D r ϱ , λ 0 R z j ( r ) + ψ j ( r , z ( r ) ) = 0 , 0 < r < 1 , z j ( 0 ) = 0 , 0 R D r m , λ z j ( 0 ) = 0 , b 1 z j ( 1 ) + b 2 0 R D r m , λ z j ( 1 ) = 0 , $$\begin{aligned}& {}^{\mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\varrho , \uplambda} \mathtt{z}_{\mathtt{j}}(\mathrm{r})+\psi _{\mathtt{j}}\bigl(\mathrm{r}, \mathtt{z}(\mathrm{r})\bigr)=0,\quad 0< \mathrm{r}< 1, \\& \mathtt{z}_{\mathtt{j}}(0)=0,\qquad {}^{\mathtt{R}}_{0} \mathrm{D}_{ \mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(0)=0, \\& \mathtt{b}_{1} \mathtt{z}_{\mathtt{j}}(1)+\mathtt{b}_{2} {}^{ \mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(1)=0, \end{aligned}$$ where j ∈ N $\mathtt{j}\in \mathbb{N}$ , 2 < ϱ ≤ 3 $2<\varrho \le 3$ , 1 < m ≤ 2 $1<\mathtt{m}\le 2$ , by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.
first_indexed 2024-03-07T14:49:40Z
format Article
id doaj.art-769c1aaeb25b452681cde1afba1fcb11
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-03-07T14:49:40Z
publishDate 2024-02-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-769c1aaeb25b452681cde1afba1fcb112024-03-05T19:48:02ZengSpringerOpenBoundary Value Problems1687-27702024-02-012024111710.1186/s13661-024-01826-6Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spacesSabbavarapu Nageswara Rao0Mahammad Khuddush1Ahmed Hussein Msmali2Abdullah Ali H. Ahmadini3Department of Mathematics, College of Science, Jazan UniversityDepartment of Mathematics, Chegg India Pvt. Ltd.Department of Mathematics, College of Science, Jazan UniversityDepartment of Mathematics, College of Science, Jazan UniversityAbstract This paper deals with the existence results of the infinite system of tempered fractional BVPs D r ϱ , λ 0 R z j ( r ) + ψ j ( r , z ( r ) ) = 0 , 0 < r < 1 , z j ( 0 ) = 0 , 0 R D r m , λ z j ( 0 ) = 0 , b 1 z j ( 1 ) + b 2 0 R D r m , λ z j ( 1 ) = 0 , $$\begin{aligned}& {}^{\mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\varrho , \uplambda} \mathtt{z}_{\mathtt{j}}(\mathrm{r})+\psi _{\mathtt{j}}\bigl(\mathrm{r}, \mathtt{z}(\mathrm{r})\bigr)=0,\quad 0< \mathrm{r}< 1, \\& \mathtt{z}_{\mathtt{j}}(0)=0,\qquad {}^{\mathtt{R}}_{0} \mathrm{D}_{ \mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(0)=0, \\& \mathtt{b}_{1} \mathtt{z}_{\mathtt{j}}(1)+\mathtt{b}_{2} {}^{ \mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(1)=0, \end{aligned}$$ where j ∈ N $\mathtt{j}\in \mathbb{N}$ , 2 < ϱ ≤ 3 $2<\varrho \le 3$ , 1 < m ≤ 2 $1<\mathtt{m}\le 2$ , by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.https://doi.org/10.1186/s13661-024-01826-6Tempered fractional derivativeMeasure of noncompactnessMeir–Keeler fixed point theoremTempered sequence spaces
spellingShingle Sabbavarapu Nageswara Rao
Mahammad Khuddush
Ahmed Hussein Msmali
Abdullah Ali H. Ahmadini
Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
Boundary Value Problems
Tempered fractional derivative
Measure of noncompactness
Meir–Keeler fixed point theorem
Tempered sequence spaces
title Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
title_full Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
title_fullStr Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
title_full_unstemmed Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
title_short Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
title_sort infinite system of nonlinear tempered fractional order bvps in tempered sequence spaces
topic Tempered fractional derivative
Measure of noncompactness
Meir–Keeler fixed point theorem
Tempered sequence spaces
url https://doi.org/10.1186/s13661-024-01826-6
work_keys_str_mv AT sabbavarapunageswararao infinitesystemofnonlineartemperedfractionalorderbvpsintemperedsequencespaces
AT mahammadkhuddush infinitesystemofnonlineartemperedfractionalorderbvpsintemperedsequencespaces
AT ahmedhusseinmsmali infinitesystemofnonlineartemperedfractionalorderbvpsintemperedsequencespaces
AT abdullahalihahmadini infinitesystemofnonlineartemperedfractionalorderbvpsintemperedsequencespaces