Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns

This study introduces electro-optical (EO) sensors (TurbNet sensors) that utilize a remote laser beacon (either coherent or incoherent) and an optical receiver with CCD camera and embedded edge AI computer (Jetson Xavier Nx) for in situ evaluation of the path-averaged atmospheric turbulence refracti...

Full description

Bibliographic Details
Main Authors: Ernst Polnau, Don L. N. Hettiarachchi, Mikhail A. Vorontsov
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/9/11/789
_version_ 1797466820645486592
author Ernst Polnau
Don L. N. Hettiarachchi
Mikhail A. Vorontsov
author_facet Ernst Polnau
Don L. N. Hettiarachchi
Mikhail A. Vorontsov
author_sort Ernst Polnau
collection DOAJ
description This study introduces electro-optical (EO) sensors (TurbNet sensors) that utilize a remote laser beacon (either coherent or incoherent) and an optical receiver with CCD camera and embedded edge AI computer (Jetson Xavier Nx) for in situ evaluation of the path-averaged atmospheric turbulence refractive index structure parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> at a high temporal rate. Evaluation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values was performed using deep neural network (DNN)-based real-time processing of short-exposure laser-beacon light intensity scintillation patterns (images) captured by a TurbNet sensor optical receiver. Several pre-trained DNN models were loaded onto the AI computer and used for TurbNet sensor performance evaluation in a set of atmospheric propagation inference trials under diverse turbulence and meteorological conditions. DNN model training, validation, and testing were performed using datasets comprised of a large number of instances of scintillation frames and corresponding reference (“true”) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values that were measured side-by-side with a commercial scintillometer (BLS 2000). Generation of datasets and inference trials was performed at the University of Dayton’s (UD) 7-km atmospheric propagation test range. The results demonstrated a 70–90% correlation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values obtained with the TurbNet sensors and those measured side-by-side with the scintillometer.
first_indexed 2024-03-09T18:45:05Z
format Article
id doaj.art-76be579f3a3d4f8783c97c5b7ebe6000
institution Directory Open Access Journal
issn 2304-6732
language English
last_indexed 2024-03-09T18:45:05Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Photonics
spelling doaj.art-76be579f3a3d4f8783c97c5b7ebe60002023-11-24T06:22:20ZengMDPI AGPhotonics2304-67322022-10-0191178910.3390/photonics9110789Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation PatternsErnst Polnau0Don L. N. Hettiarachchi1Mikhail A. Vorontsov2Intelligent Optics Laboratory, School of Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USAIntelligent Optics Laboratory, School of Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USAIntelligent Optics Laboratory, School of Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USAThis study introduces electro-optical (EO) sensors (TurbNet sensors) that utilize a remote laser beacon (either coherent or incoherent) and an optical receiver with CCD camera and embedded edge AI computer (Jetson Xavier Nx) for in situ evaluation of the path-averaged atmospheric turbulence refractive index structure parameter <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> at a high temporal rate. Evaluation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values was performed using deep neural network (DNN)-based real-time processing of short-exposure laser-beacon light intensity scintillation patterns (images) captured by a TurbNet sensor optical receiver. Several pre-trained DNN models were loaded onto the AI computer and used for TurbNet sensor performance evaluation in a set of atmospheric propagation inference trials under diverse turbulence and meteorological conditions. DNN model training, validation, and testing were performed using datasets comprised of a large number of instances of scintillation frames and corresponding reference (“true”) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values that were measured side-by-side with a commercial scintillometer (BLS 2000). Generation of datasets and inference trials was performed at the University of Dayton’s (UD) 7-km atmospheric propagation test range. The results demonstrated a 70–90% correlation between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></mrow></semantics></math></inline-formula> values obtained with the TurbNet sensors and those measured side-by-side with the scintillometer.https://www.mdpi.com/2304-6732/9/11/789atmospheric turbulencedeep neural networkelectro-optics sensorembedded edge AI computingNVIDIA Jetson Xavier Nxreal-time sensing
spellingShingle Ernst Polnau
Don L. N. Hettiarachchi
Mikhail A. Vorontsov
Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns
Photonics
atmospheric turbulence
deep neural network
electro-optics sensor
embedded edge AI computing
NVIDIA Jetson Xavier Nx
real-time sensing
title Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns
title_full Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns
title_fullStr Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns
title_full_unstemmed Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns
title_short Electro-Optical Sensors for Atmospheric Turbulence Strength Characterization with Embedded Edge AI Processing of Scintillation Patterns
title_sort electro optical sensors for atmospheric turbulence strength characterization with embedded edge ai processing of scintillation patterns
topic atmospheric turbulence
deep neural network
electro-optics sensor
embedded edge AI computing
NVIDIA Jetson Xavier Nx
real-time sensing
url https://www.mdpi.com/2304-6732/9/11/789
work_keys_str_mv AT ernstpolnau electroopticalsensorsforatmosphericturbulencestrengthcharacterizationwithembeddededgeaiprocessingofscintillationpatterns
AT donlnhettiarachchi electroopticalsensorsforatmosphericturbulencestrengthcharacterizationwithembeddededgeaiprocessingofscintillationpatterns
AT mikhailavorontsov electroopticalsensorsforatmosphericturbulencestrengthcharacterizationwithembeddededgeaiprocessingofscintillationpatterns