Nonlinear system identification using modified variational autoencoders

This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overf...

Full description

Bibliographic Details
Main Authors: Jose L. Paniagua, Jesús A. López
Format: Article
Language:English
Published: Elsevier 2024-06-01
Series:Intelligent Systems with Applications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667305324000206
_version_ 1797289666477555712
author Jose L. Paniagua
Jesús A. López
author_facet Jose L. Paniagua
Jesús A. López
author_sort Jose L. Paniagua
collection DOAJ
description This research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener-Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23×10−3, 16.69×10−3, 0.002×10−3 and 0.037×10−3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.
first_indexed 2024-03-07T19:08:24Z
format Article
id doaj.art-76c1922c1b7346348a42286a844214d3
institution Directory Open Access Journal
issn 2667-3053
language English
last_indexed 2024-03-07T19:08:24Z
publishDate 2024-06-01
publisher Elsevier
record_format Article
series Intelligent Systems with Applications
spelling doaj.art-76c1922c1b7346348a42286a844214d32024-03-01T05:07:42ZengElsevierIntelligent Systems with Applications2667-30532024-06-0122200344Nonlinear system identification using modified variational autoencodersJose L. Paniagua0Jesús A. López1Corresponding author.; Facultad de Ingeniería, Universidad Autónoma de Occidente, Cali 760030, ColombiaFacultad de Ingeniería, Universidad Autónoma de Occidente, Cali 760030, ColombiaThis research proposes a methodology for identifying nonlinear systems using input/output data and deep learning generative models. Our framework integrates Variational Autoencoders (VAE) with Nonlinear Autoregressive with exogenous input (NARX) in a unified identification structure to address overfitting in nonlinear system identification using NARX structures. Specifically, we modify a variational autoencoder by replacing the decoder module with a NARX model using the latent space information captured from the VAE encoder module as one of the exogenous inputs. Following the training phase, the decoder module can be used as a nonlinear model of the system. We evaluate the efficacy of our approach by performing open-loop prediction tests on data from four nonlinear benchmark systems: Cascaded tanks, Gas furnace, Silverbox, and Wiener-Hammerstein. The proposed VAE-NARX method reported Root Mean Squared Error (RMSE) of 8.23×10−3, 16.69×10−3, 0.002×10−3 and 0.037×10−3 respectively. Our results demonstrate that our proposed method achieves similar and outperforms prediction performances to standard identification techniques and can enhance the performance of traditional nonlinear system identification methods based on multi-layer perceptron models.http://www.sciencedirect.com/science/article/pii/S2667305324000206System identificationDeep learningGenerative modelingNonlinear dynamic systems
spellingShingle Jose L. Paniagua
Jesús A. López
Nonlinear system identification using modified variational autoencoders
Intelligent Systems with Applications
System identification
Deep learning
Generative modeling
Nonlinear dynamic systems
title Nonlinear system identification using modified variational autoencoders
title_full Nonlinear system identification using modified variational autoencoders
title_fullStr Nonlinear system identification using modified variational autoencoders
title_full_unstemmed Nonlinear system identification using modified variational autoencoders
title_short Nonlinear system identification using modified variational autoencoders
title_sort nonlinear system identification using modified variational autoencoders
topic System identification
Deep learning
Generative modeling
Nonlinear dynamic systems
url http://www.sciencedirect.com/science/article/pii/S2667305324000206
work_keys_str_mv AT joselpaniagua nonlinearsystemidentificationusingmodifiedvariationalautoencoders
AT jesusalopez nonlinearsystemidentificationusingmodifiedvariationalautoencoders