Graph Neural Networks and 3-dimensional topology

We test the efficiency of applying geometric deep learning to the problems in low-dimensional topology in a certain simple setting. Specifically, we consider the class of 3-manifolds described by plumbing graphs and use graph neural networks (GNN) for the problem of deciding whether a pair of graphs...

Full description

Bibliographic Details
Main Authors: Song Jin Ri, Pavel Putrov
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:Machine Learning: Science and Technology
Subjects:
Online Access:https://doi.org/10.1088/2632-2153/acf097
Description
Summary:We test the efficiency of applying geometric deep learning to the problems in low-dimensional topology in a certain simple setting. Specifically, we consider the class of 3-manifolds described by plumbing graphs and use graph neural networks (GNN) for the problem of deciding whether a pair of graphs give homeomorphic 3-manifolds. We use supervised learning to train a GNN that provides the answer to such a question with high accuracy. Moreover, we consider reinforcement learning by a GNN to find a sequence of Neumann moves that relates the pair of graphs if the answer is positive. The setting can be understood as a toy model of the problem of deciding whether a pair of Kirby diagrams give diffeomorphic 3- or 4-manifolds.
ISSN:2632-2153