COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY

In this paper, we have shown an approach for the automatic colorization of SAR backscatter images, which are usually provided in the form of single-channel gray-scale imagery. Using a deep generative model proposed for the purpose of photograph colorization and a Lab-space-based SAR-optical image fu...

Full description

Bibliographic Details
Main Authors: M. Schmitt, L. H. Hughes, M. Körner, X. X. Zhu
Format: Article
Language:English
Published: Copernicus Publications 2018-05-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/1045/2018/isprs-archives-XLII-2-1045-2018.pdf
_version_ 1818846878270226432
author M. Schmitt
L. H. Hughes
M. Körner
X. X. Zhu
X. X. Zhu
author_facet M. Schmitt
L. H. Hughes
M. Körner
X. X. Zhu
X. X. Zhu
author_sort M. Schmitt
collection DOAJ
description In this paper, we have shown an approach for the automatic colorization of SAR backscatter images, which are usually provided in the form of single-channel gray-scale imagery. Using a deep generative model proposed for the purpose of photograph colorization and a Lab-space-based SAR-optical image fusion formulation, we are able to predict artificial color SAR images, which disclose much more information to the human interpreter than the original SAR data. Future work will aim at further adaption of the employed procedure to our special case of multi-sensor remote sensing imagery. Furthermore, we will investigate if the low-level representations learned intrinsically by the deep network can be used for SAR image interpretation in an end-to-end manner.
first_indexed 2024-12-19T05:52:33Z
format Article
id doaj.art-76dd7f18a15744d68d27c23070866420
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-12-19T05:52:33Z
publishDate 2018-05-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-76dd7f18a15744d68d27c230708664202022-12-21T20:33:33ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342018-05-01XLII-21045105110.5194/isprs-archives-XLII-2-1045-2018COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERYM. Schmitt0L. H. Hughes1M. Körner2X. X. Zhu3X. X. Zhu4Signal Processing in Earth Observation, Technical University of Munich (TUM), Munich, GermanySignal Processing in Earth Observation, Technical University of Munich (TUM), Munich, GermanyChair of Remote Sensing Technology, Technical University of Munich (TUM), Munich, GermanySignal Processing in Earth Observation, Technical University of Munich (TUM), Munich, GermanyRemote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, GermanyIn this paper, we have shown an approach for the automatic colorization of SAR backscatter images, which are usually provided in the form of single-channel gray-scale imagery. Using a deep generative model proposed for the purpose of photograph colorization and a Lab-space-based SAR-optical image fusion formulation, we are able to predict artificial color SAR images, which disclose much more information to the human interpreter than the original SAR data. Future work will aim at further adaption of the employed procedure to our special case of multi-sensor remote sensing imagery. Furthermore, we will investigate if the low-level representations learned intrinsically by the deep network can be used for SAR image interpretation in an end-to-end manner.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/1045/2018/isprs-archives-XLII-2-1045-2018.pdf
spellingShingle M. Schmitt
L. H. Hughes
M. Körner
X. X. Zhu
X. X. Zhu
COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY
title_full COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY
title_fullStr COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY
title_full_unstemmed COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY
title_short COLORIZING SENTINEL-1 SAR IMAGES USING A VARIATIONAL AUTOENCODER CONDITIONED ON SENTINEL-2 IMAGERY
title_sort colorizing sentinel 1 sar images using a variational autoencoder conditioned on sentinel 2 imagery
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/1045/2018/isprs-archives-XLII-2-1045-2018.pdf
work_keys_str_mv AT mschmitt colorizingsentinel1sarimagesusingavariationalautoencoderconditionedonsentinel2imagery
AT lhhughes colorizingsentinel1sarimagesusingavariationalautoencoderconditionedonsentinel2imagery
AT mkorner colorizingsentinel1sarimagesusingavariationalautoencoderconditionedonsentinel2imagery
AT xxzhu colorizingsentinel1sarimagesusingavariationalautoencoderconditionedonsentinel2imagery
AT xxzhu colorizingsentinel1sarimagesusingavariationalautoencoderconditionedonsentinel2imagery