On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system

In this paper, we study the existence and multiplicity solutions for the following Klein–Gordon–Maxwell system \begin{align*} \begin{cases} - \Delta u +V(x)u-(2\omega+\phi)\phi u =f(x,u), &x\in \mathbb{R}^3,\\ \Delta \phi =(\omega+\phi)u^2, \quad & x\in \mathbb{R}^3, \\ \end{cases} \en...

Full description

Bibliographic Details
Main Authors: Lixia Wang, Chunlian Xiong, Pingping Zhao
Format: Article
Language:English
Published: University of Szeged 2023-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10072
_version_ 1797352363661459456
author Lixia Wang
Chunlian Xiong
Pingping Zhao
author_facet Lixia Wang
Chunlian Xiong
Pingping Zhao
author_sort Lixia Wang
collection DOAJ
description In this paper, we study the existence and multiplicity solutions for the following Klein–Gordon–Maxwell system \begin{align*} \begin{cases} - \Delta u +V(x)u-(2\omega+\phi)\phi u =f(x,u), &x\in \mathbb{R}^3,\\ \Delta \phi =(\omega+\phi)u^2, \quad & x\in \mathbb{R}^3, \\ \end{cases} \end{align*} where $\omega>0$ is a constant and the nonlinearity $f(x,u)$ is either asymptotically linear in $u$ at infinity or the primitive of $f(x,u)$ is of 4-superlinear growth in $u$ at infinity. Under some suitable assumptions, the existence and multiplicity of solutions are proved by using the Mountain Pass theorem and the fountain theorem, respectively.
first_indexed 2024-03-08T13:15:23Z
format Article
id doaj.art-76e0d9b7a39449d7996ca51cecb5382f
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-03-08T13:15:23Z
publishDate 2023-05-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-76e0d9b7a39449d7996ca51cecb5382f2024-01-18T08:28:07ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752023-05-0120231911810.14232/ejqtde.2023.1.1910072On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell systemLixia Wang0Chunlian Xiong1Pingping Zhao2Tianjin Chengjian University, P.R. ChinaTianjin Chengjian University, P.R. ChinaTianjin Chengjian University, P.R. ChinaIn this paper, we study the existence and multiplicity solutions for the following Klein–Gordon–Maxwell system \begin{align*} \begin{cases} - \Delta u +V(x)u-(2\omega+\phi)\phi u =f(x,u), &x\in \mathbb{R}^3,\\ \Delta \phi =(\omega+\phi)u^2, \quad & x\in \mathbb{R}^3, \\ \end{cases} \end{align*} where $\omega>0$ is a constant and the nonlinearity $f(x,u)$ is either asymptotically linear in $u$ at infinity or the primitive of $f(x,u)$ is of 4-superlinear growth in $u$ at infinity. Under some suitable assumptions, the existence and multiplicity of solutions are proved by using the Mountain Pass theorem and the fountain theorem, respectively.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10072klein–gordon–maxwell systemsign-changing potential4-superlinearasymptotically linear
spellingShingle Lixia Wang
Chunlian Xiong
Pingping Zhao
On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system
Electronic Journal of Qualitative Theory of Differential Equations
klein–gordon–maxwell system
sign-changing potential
4-superlinear
asymptotically linear
title On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system
title_full On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system
title_fullStr On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system
title_full_unstemmed On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system
title_short On the existence and multiplicity of solutions for nonlinear Klein–Gordon–Maxwell system
title_sort on the existence and multiplicity of solutions for nonlinear klein gordon maxwell system
topic klein–gordon–maxwell system
sign-changing potential
4-superlinear
asymptotically linear
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10072
work_keys_str_mv AT lixiawang ontheexistenceandmultiplicityofsolutionsfornonlinearkleingordonmaxwellsystem
AT chunlianxiong ontheexistenceandmultiplicityofsolutionsfornonlinearkleingordonmaxwellsystem
AT pingpingzhao ontheexistenceandmultiplicityofsolutionsfornonlinearkleingordonmaxwellsystem