ENZYMATIC HYDROLYSIS OF SWITCHGRASS AND COASTAL BERMUDA GRASS PRETREATED USING DIFFERENT CHEMICAL METHODS

To investigate the effects of biomass feedstock and pretreatment method on the enzyme requirement during hydrolysis, swichgrass and coastal Bermuda grass pretreated using H2SO4, NaOH, and Ca(OH)2 at the optimal conditions were subjected to enzymatic hydrolysis using two enzyme combinations: NS 50013...

Full description

Bibliographic Details
Main Authors: Jiele Xu, Ziyu Wang, Ratna Sharma-Shivappa, Jay Cheng
Format: Article
Language:English
Published: North Carolina State University 2011-06-01
Series:BioResources
Subjects:
Online Access:http://www.ncsu.edu/bioresources/BioRes_06/BioRes_06_3_2990_Xu_WSC_Enzym_Hydrol_Switchgrass_Chem_Methods_1529.pdf
Description
Summary:To investigate the effects of biomass feedstock and pretreatment method on the enzyme requirement during hydrolysis, swichgrass and coastal Bermuda grass pretreated using H2SO4, NaOH, and Ca(OH)2 at the optimal conditions were subjected to enzymatic hydrolysis using two enzyme combinations: NS 50013 + NS 50010 and Cellic CTec + Cellic HTec. The enzyme loadings were optimized, and correlations between feedstock property, pretreatment strategy, and enzyme usage were evaluated. The results show that pretreatment methods resulting in greater lignin contents in the pretreated biomass were generally associated with higher enzyme requirements. More sugars could be recovered from alkaline-pretreated biomass during enzymatic hydrolysis due to the better carbohydrate preservation achieved at mild pretreatment temperatures. The cellulase enzyme, Cellic CTec, was more efficient in catalyzing the hydrolysis of coastal Bermuda grass, a feedstock more digestible than the pretreated swichgrass, following pretreatment with NaOH or Ca(OH)2.
ISSN:1930-2126