Study of Thermal Management System Using Composite Phase Change Materials and Thermoelectric Cooling Sheet for Power Battery Pack

Scientific and reasonable battery thermal management systems contribute to improve the performance of a power battery, prolong its life of service, and improve its safety. Based on TAFEL-LAE895 type 100Ah ternary lithium ion power battery, this paper is conducted on charging and discharging experime...

Full description

Bibliographic Details
Main Authors: Chuan-Wei Zhang, Shang-Rui Chen, Huai-Bin Gao, Ke-Jun Xu, Zhan Xia, Shuai-Tian Li
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/10/1937
Description
Summary:Scientific and reasonable battery thermal management systems contribute to improve the performance of a power battery, prolong its life of service, and improve its safety. Based on TAFEL-LAE895 type 100Ah ternary lithium ion power battery, this paper is conducted on charging and discharging experiments at different rates to study the rise of temperature and the uniformity of the battery. Paraffin can be used to reduce the surface temperature of the battery, while expanded graphite (EG) is added to improve the thermal conductivity and viscosity of the composite phase change material (CPCM), and to reduce the fluidity after melting. With the increase of graphite content, the heat storage capacity of phase change material (PCM) decreases, which affects the thermal management effect directly. Therefore, this paper combines heat pipe and semiconductor refrigeration technology to transform heat from the inner CPCM to the thermoelectric cooling sheet for heat dissipation. The results show that the surface temperature of the battery can be kept within a reasonable range when discharging at high rate. The temperature uniformity of the battery is improved and the energy of the battery is saved.
ISSN:1996-1073