Flesh quality loss in response to dietary isoleucine deficiency and excess in fish: a link to impaired Nrf2-dependent antioxidant defense in muscle.

The present study explored the impact of dietary isoleucine (Ile) on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g) were fed diets containing six graded levels of Ile (3.8, 6.6, 9...

Full description

Bibliographic Details
Main Authors: Lu Gan, Wei-Dan Jiang, Pei Wu, Yang Liu, Jun Jiang, Shu-Hong Li, Ling Tang, Sheng-Yao Kuang, Lin Feng, Xiao-Qiu Zhou
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4267783?pdf=render
Description
Summary:The present study explored the impact of dietary isoleucine (Ile) on fish growth and flesh quality and revealed a possible role of muscle antioxidant defense in flesh quality in relation to dietary Ile. Grass carp (weighing 256.8±3.5 g) were fed diets containing six graded levels of Ile (3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg) for eight weeks. The results indicated that compared with Ile deficiency (3.8 g/kg diets) and excess (18.5 g/kg diets) groups, 9.3-15.2 g Ile/kg diet supplementations promoted fish growth and muscle fat deposition, whereas 6.6-15.2 g Ile/kg diets supplementation enhanced muscle nutrients (protein and total EAAs) deposition. Furthermore, muscle shear force, pH value, and hydroxyproline concentration were improved by 9.3-12.5, 9.3 and 9.3 g Ile/kg diet supplementations, respectively. However, muscle cooking loss, lactate content, and activities of cathepsin B and L were decreased by 6.6-15.2, 9.3-12.5, 9.3-12.5 and 9.3-15.2 g Ile/kg diet supplementations, respectively. Additionally, 6.6-15.2 and 6.6-12.5 g Ile/kg diet supplementations attenuated malondialdehyde and protein carbonyl contents, respectively. The activities of copper/zinc superoxide dismutase (Cu/Zn-SOD) and glutathione peroxidase (GPx), and glutathione content were enhanced by 6.6-9.3, 6.6-12.5 and 6.6-15.2 g Ile/kg diet supplementations, respectively. Moreover, the relative mRNA expressions of antioxidant enzymes, including Cu/Zn-SOD (6.6-12.5 g/kg diets) and GPx (12.5 g/kg diets), as well as antioxidant-related signaling molecules, including NF-E2-related factor 2 (Nrf2) (6.6-12.5 g/kg diets), target of rapamycin (6.6-12.5 g/kg diets), ribosomal S6 protein kinase 1 (9.3-12.5 g/kg diets) and casein kinase 2 (6.6-12.5 g/kg diets), were up-regulated when Ile diet supplementations were administered at these levels, respectively, whereas the relative mRNA expression of Kelch-like ECH-associated protein 1 was down-regulated with 9.3 g Ile/kg diet supplementations. Collectively, the present study indicated that optimum isoleucine improved flesh quality, partly due to the activation of antioxidant defense through the Nrf2 signaling pathway.
ISSN:1932-6203