Homeostasis model assessment, serum insulin and their relation to body fat in cats

Abstract Background Obesity is associated with insulin resistance (IR) and considered a risk factor for diabetes mellitus (DM) in cats. It has been proposed that homeostasis model assessment (HOMA-IR), which is the product of fasting serum insulin (mU/L) and glucose (mmol/L) divided by 22.5, can be...

Full description

Bibliographic Details
Main Authors: Emma M. Strage, Charles J. Ley, Johannes Forkman, Malin Öhlund, Sarah Stadig, Anna Bergh, Cecilia Ley
Format: Article
Language:English
Published: BMC 2021-01-01
Series:BMC Veterinary Research
Subjects:
Online Access:https://doi.org/10.1186/s12917-020-02729-1
Description
Summary:Abstract Background Obesity is associated with insulin resistance (IR) and considered a risk factor for diabetes mellitus (DM) in cats. It has been proposed that homeostasis model assessment (HOMA-IR), which is the product of fasting serum insulin (mU/L) and glucose (mmol/L) divided by 22.5, can be used to indicate IR. The objectives of this study were threefold: (i) to evaluate associations between body fat, fasting insulin, and HOMA-IR, (ii) to determine population-based reference interval of HOMA-IR in healthy lean cats, and (iii) to evaluate biological variation of HOMA-IR and fasting insulin in cats. Results 150 cats were grouped as lean or overweight based on body condition score and in 68 of the cats body fat percentage (BF%) was estimated by computed tomography. Fasting serum insulin and glucose concentrations were analysed. Statistical differences in HOMA-IR and insulin between overweight or lean cats were evaluated using Wilcoxon rank-sum test. Robust method with Box-Cox transformation was used for calculating HOMA-IR reference interval in healthy lean cats. Relations between BF% and HOMA-IR and insulin were evaluated by regression analysis. Restricted maximum likelihood ratio was used to calculate indices of biological variation of HOMA-IR and insulin in seven cats. There were significant differences between groups with overweight cats (n = 77) having higher HOMA-IR (p < 0.0001) and insulin (p = 0.0002) than lean cats (n = 73). Reference interval for HOMA-IR in lean cats was 0.1–3.0. HOMA-IR and fasting insulin concentrations showed similar significant positive association with BF% (p = 0.0010 and p = 0.0017, respectively). Within-animal coefficient of variation of HOMA-IR and insulin was 51% and 49%, respectively. Conclusions HOMA-IR and fasting insulin higher in overweight than lean cats and correlate to BF%. The established population-based reference interval for HOMA-IR as well as the indices of biological variation for HOMA-IR and fasting insulin may be used when interpreting HOMA-IR and fasting insulin in cats. Further studies are needed to evaluate if HOMA-IR or fasting insulin is useful for identifying cats at risk of developing DM.
ISSN:1746-6148