Transformation of criteria with a-priori chosen optimal values

Aim of multiple criteria decision-aid (MCDA) methods is to find the best alternative among the ones that are available or to rank alternatives in the order of preference. There are the following core pillars of the methods: the set of criteria and matrix with values of criteria that characterise the...

Full description

Bibliographic Details
Main Authors: Askoldas Podviezko, Valentinas Podvezko
Format: Article
Language:English
Published: Vilnius University Press 2016-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.journals.vu.lt/LMR/article/view/14956
_version_ 1819024552518221824
author Askoldas Podviezko
Valentinas Podvezko
author_facet Askoldas Podviezko
Valentinas Podvezko
author_sort Askoldas Podviezko
collection DOAJ
description Aim of multiple criteria decision-aid (MCDA) methods is to find the best alternative among the ones that are available or to rank alternatives in the order of preference. There are the following core pillars of the methods: the set of criteria and matrix with values of criteria that characterise the evaluated alternatives (decision matrix); and vector of weights that reflect relative importance of criteria. Usually, two types of criteria are used by researchers. Maximising criteria (e.g. profits) reflect a better situation whenever the larger value has been attained. While in case a criterion is minimising (e.g. costs), the better situation is reflected when its value is smaller. Such situations, when the best value of a criterion has a certain value, which differs from the maximal or the minimal, are usually not considered. This paper aims to fill this gap. Such criteria will be named as criteria with a-priori chosen optimal values. The aim of the paper is to propose appropriate types of transformation for criteria with a-priori chosen optimal values. Such transformations appear to be general and can be used with all three types of criteria.
first_indexed 2024-12-21T04:56:36Z
format Article
id doaj.art-77160d284b404ac390aec00c96fbbbbe
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-12-21T04:56:36Z
publishDate 2016-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-77160d284b404ac390aec00c96fbbbbe2022-12-21T19:15:21ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2016-12-0157A10.15388/LMR.A.2016.12Transformation of criteria with a-priori chosen optimal valuesAskoldas Podviezko0Valentinas Podvezko1Mykolas Romeris UniversityVilnius Gediminas Technical UniversityAim of multiple criteria decision-aid (MCDA) methods is to find the best alternative among the ones that are available or to rank alternatives in the order of preference. There are the following core pillars of the methods: the set of criteria and matrix with values of criteria that characterise the evaluated alternatives (decision matrix); and vector of weights that reflect relative importance of criteria. Usually, two types of criteria are used by researchers. Maximising criteria (e.g. profits) reflect a better situation whenever the larger value has been attained. While in case a criterion is minimising (e.g. costs), the better situation is reflected when its value is smaller. Such situations, when the best value of a criterion has a certain value, which differs from the maximal or the minimal, are usually not considered. This paper aims to fill this gap. Such criteria will be named as criteria with a-priori chosen optimal values. The aim of the paper is to propose appropriate types of transformation for criteria with a-priori chosen optimal values. Such transformations appear to be general and can be used with all three types of criteria.https://www.journals.vu.lt/LMR/article/view/14956multiple criteria decision aid methodstransformation of datanormalisationcriteria with a-priori chosen optimal values
spellingShingle Askoldas Podviezko
Valentinas Podvezko
Transformation of criteria with a-priori chosen optimal values
Lietuvos Matematikos Rinkinys
multiple criteria decision aid methods
transformation of data
normalisation
criteria with a-priori chosen optimal values
title Transformation of criteria with a-priori chosen optimal values
title_full Transformation of criteria with a-priori chosen optimal values
title_fullStr Transformation of criteria with a-priori chosen optimal values
title_full_unstemmed Transformation of criteria with a-priori chosen optimal values
title_short Transformation of criteria with a-priori chosen optimal values
title_sort transformation of criteria with a priori chosen optimal values
topic multiple criteria decision aid methods
transformation of data
normalisation
criteria with a-priori chosen optimal values
url https://www.journals.vu.lt/LMR/article/view/14956
work_keys_str_mv AT askoldaspodviezko transformationofcriteriawithapriorichosenoptimalvalues
AT valentinaspodvezko transformationofcriteriawithapriorichosenoptimalvalues