Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material
Abstract Background The aim of this study is to evaluate an experimental tricalcium silicate phase (C3S) and tetracalcium phosphate (TTCP) material to be used as a root canal furcation perforation repair. C3S and TTCP phases were synthesized in nano-size particles by firing the required molar ratios...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2022-07-01
|
Series: | Bulletin of the National Research Centre |
Subjects: | |
Online Access: | https://doi.org/10.1186/s42269-022-00889-8 |
_version_ | 1811218288506568704 |
---|---|
author | M. M. Radwan M. E. Khallaf |
author_facet | M. M. Radwan M. E. Khallaf |
author_sort | M. M. Radwan |
collection | DOAJ |
description | Abstract Background The aim of this study is to evaluate an experimental tricalcium silicate phase (C3S) and tetracalcium phosphate (TTCP) material to be used as a root canal furcation perforation repair. C3S and TTCP phases were synthesized in nano-size particles by firing the required molar ratios of chemically pure reactants by solid-state reactions at elevated temperatures. The influence of Streptococcus thermophilus bacterial medium on the hydration reaction characteristics and morphology of 1:1 composite material of C3S and TTCP in comparison with distilled water was studied. Setting time, micro-hardness, pH of immersion solution, calcium ion concentration, phosphorous ion concentration, XRD, FTIR, scanning electron microscopy and cytotoxicity of the synthesized composite were investigated, and also, its sealing ability in bacterial media and in distilled water was evaluated. Results The results showed that curing of pastes in the bacterial medium did not inhibit the hydration process of the synthesized composite but surface softening due to the great acceleration and encapsulation effects of the highly ionized curing medium resulting in lower micro-hardness values. The dissolution of TTCP phase was also increased in the bacterial medium resulting in precipitation of more hydroxyapatite inside the more porous system of pastes cured in the bacterial solution which was also evident by a non-significant decrease in the sealing ability in bacterial medium. Conclusions Mixing of tricalcium silicate (C3S) and tetracalcium phosphate (TTCP) resulted in a mix that was stable in bacterial medium and could be used for root canal perforation repair. |
first_indexed | 2024-04-12T07:07:18Z |
format | Article |
id | doaj.art-772a13c5fca34fdf8f06cc1964525cc9 |
institution | Directory Open Access Journal |
issn | 2522-8307 |
language | English |
last_indexed | 2024-04-12T07:07:18Z |
publishDate | 2022-07-01 |
publisher | SpringerOpen |
record_format | Article |
series | Bulletin of the National Research Centre |
spelling | doaj.art-772a13c5fca34fdf8f06cc1964525cc92022-12-22T03:42:45ZengSpringerOpenBulletin of the National Research Centre2522-83072022-07-0146111310.1186/s42269-022-00889-8Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair materialM. M. Radwan0M. E. Khallaf1Refractories, Ceramics and Building Materials Department, National Research Centre (NRC)Refractories, Ceramics and Building Materials Department, National Research Centre (NRC)Abstract Background The aim of this study is to evaluate an experimental tricalcium silicate phase (C3S) and tetracalcium phosphate (TTCP) material to be used as a root canal furcation perforation repair. C3S and TTCP phases were synthesized in nano-size particles by firing the required molar ratios of chemically pure reactants by solid-state reactions at elevated temperatures. The influence of Streptococcus thermophilus bacterial medium on the hydration reaction characteristics and morphology of 1:1 composite material of C3S and TTCP in comparison with distilled water was studied. Setting time, micro-hardness, pH of immersion solution, calcium ion concentration, phosphorous ion concentration, XRD, FTIR, scanning electron microscopy and cytotoxicity of the synthesized composite were investigated, and also, its sealing ability in bacterial media and in distilled water was evaluated. Results The results showed that curing of pastes in the bacterial medium did not inhibit the hydration process of the synthesized composite but surface softening due to the great acceleration and encapsulation effects of the highly ionized curing medium resulting in lower micro-hardness values. The dissolution of TTCP phase was also increased in the bacterial medium resulting in precipitation of more hydroxyapatite inside the more porous system of pastes cured in the bacterial solution which was also evident by a non-significant decrease in the sealing ability in bacterial medium. Conclusions Mixing of tricalcium silicate (C3S) and tetracalcium phosphate (TTCP) resulted in a mix that was stable in bacterial medium and could be used for root canal perforation repair.https://doi.org/10.1186/s42269-022-00889-8Tricalcium silicateTetracalcium phosphateCalcium silicate hydrateHydroxyapatiteCytotoxicityAntibacterial |
spellingShingle | M. M. Radwan M. E. Khallaf Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material Bulletin of the National Research Centre Tricalcium silicate Tetracalcium phosphate Calcium silicate hydrate Hydroxyapatite Cytotoxicity Antibacterial |
title | Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material |
title_full | Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material |
title_fullStr | Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material |
title_full_unstemmed | Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material |
title_short | Hydration behavior of an experimental tricalcium silicate/tetracalcium phosphate bio-cement in Streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material |
title_sort | hydration behavior of an experimental tricalcium silicate tetracalcium phosphate bio cement in streptococcus thermophiles bacterial solution in comparison with distilled water used as a root canal furcation perforation repair material |
topic | Tricalcium silicate Tetracalcium phosphate Calcium silicate hydrate Hydroxyapatite Cytotoxicity Antibacterial |
url | https://doi.org/10.1186/s42269-022-00889-8 |
work_keys_str_mv | AT mmradwan hydrationbehaviorofanexperimentaltricalciumsilicatetetracalciumphosphatebiocementinstreptococcusthermophilesbacterialsolutionincomparisonwithdistilledwaterusedasarootcanalfurcationperforationrepairmaterial AT mekhallaf hydrationbehaviorofanexperimentaltricalciumsilicatetetracalciumphosphatebiocementinstreptococcusthermophilesbacterialsolutionincomparisonwithdistilledwaterusedasarootcanalfurcationperforationrepairmaterial |