A new feedback mechanism linking forests, aerosols, and climate

The possible connections between the carbon balance of ecosystems and aerosol-cloud-climate interactions play a significant role in climate change studies. Carbon dioxide is a greenhouse gas, whereas the net effect of atmospheric aerosols is to cool the climate. Here, we investigated the connection...

Full description

Bibliographic Details
Main Authors: M. Kulmala, T. Suni, K. E. J. Lehtinen, M. Dal Maso, M. Boy, A. Reissell, Ü. Rannik, P. Aalto, P. Keronen, H. Hakola, J. Bäck, T. Hoffmann, T. Vesala, P. Hari
Format: Article
Language:English
Published: Copernicus Publications 2004-01-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/4/557/2004/acp-4-557-2004.pdf
Description
Summary:The possible connections between the carbon balance of ecosystems and aerosol-cloud-climate interactions play a significant role in climate change studies. Carbon dioxide is a greenhouse gas, whereas the net effect of atmospheric aerosols is to cool the climate. Here, we investigated the connection between forest-atmosphere carbon exchange and aerosol dynamics in the continental boundary layer by means of multiannual data sets of particle formation and growth rates, of CO<sub>2</sub> fluxes, and of monoterpene concentrations in a Scots pine forest in southern Finland. We suggest a new, interesting link and a potentially important feedback among forest ecosystem functioning, aerosols, and climate: Considering that globally increasing temperatures and CO<sub>2</sub> fertilization are likely to lead to increased photosynthesis and forest growth, an increase in forest biomass would increase emissions of non-methane biogenic volatile organic compounds and thereby enhance organic aerosol production. This feedback mechanism couples the climate effect of CO<sub>2</sub> with that of aerosols in a novel way.
ISSN:1680-7316
1680-7324