Induction of Localized Hyperthermia by Millisecond Laser Pulses in the Presence of Gold-Gold Sulphide Nanoparticles in a Phantom
Introduction Application of near-infrared absorbing nanostructures can induce hyperthermia, in addition to providing more efficient photothermal effects. Gold-gold sulfide (GGS) is considered as one of these nanostructures. This study was performed on a tissue-equivalent optical-thermal phantom to...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Mashhad University of Medical Sciences
2015-05-01
|
Series: | Iranian Journal of Medical Physics |
Subjects: | |
Online Access: | http://ijmp.mums.ac.ir/pdf_4331_b3b834cdf3d31decf77d7fbcec0b789b.html |
Summary: | Introduction Application of near-infrared absorbing nanostructures can induce hyperthermia, in addition to providing more efficient photothermal effects. Gold-gold sulfide (GGS) is considered as one of these nanostructures. This study was performed on a tissue-equivalent optical-thermal phantom to determine the temperature profile in the presence and absence of GGS and millisecond pulses of a near-infrared laser. Moreover, the feasibility of hyperthermia induction was investigated in a simulated tumor. Materials and Methods A tumor with its surrounding tissues was simulated in a phantom made of Agarose and Intralipid. The tumor was irradiated by 30 laser pulses with durations of 30, 100, and 400 ms and fluences of 40 and 60 J/cm2. Temperature variations in the phantom with and without GGS were recorded, using fast-response sensors of a digital thermometer, placed at different distances from the central axis at three depths. The temperature rise was recorded by varying duration and fluence of the laser pulses. Results The rise in temperature was recorded by increasing laser fluence and number of pulses for three durations. The temperature profile was obtained at each depth. The presence of GGS resulted in a significant increase in temperature in all cases (P |
---|---|
ISSN: | 2252-0309 2345-3672 |