Alternative solitons in the Hirota–Satsuma system via the direct method

Multisolitons and multi-hump solitons are constructed for the coupled Korteweg–de Vries (cKdV) system introduced by Hirota and Satsuma (1981) in the context of the propagation of two waves interacting with different dispersion relations. The direct method analytically exhibit a new class of compleme...

Full description

Bibliographic Details
Main Authors: Hugo Parra Prado, Luis A. Cisneros-Ake
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Partial Differential Equations in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666818120300206
Description
Summary:Multisolitons and multi-hump solitons are constructed for the coupled Korteweg–de Vries (cKdV) system introduced by Hirota and Satsuma (1981) in the context of the propagation of two waves interacting with different dispersion relations. The direct method analytically exhibit a new class of complementary or alternative soliton solutions functionally different to the traditional or classical multisolitons known (Hirota and Satsuma, 1981; Ramani et al., 1983; Parra Prado and Cisneros-Ake, 2020). As in the classical case, our alternative multisolitons are found to obey elastic interactions of the N-KdV and M-cKdV solitons. To show this, we inductively construct tables to describe in detail the mechanism of the different wave interactions and the coefficients involved in them. As a particular scenario, it is found that each of the 1-cKdV and 1-KdV-1cKdV interaction cases may produce two independent criteria for the appearance of one-soliton solutions consisting of two humps in shape. A proper combination of these two conditions gives place to multi-hump solitons. We explicitly show the two-one, two-two, three-one and three-two humps for the two-component wave solutions.
ISSN:2666-8181