Photorhabdus lux-operon heat shock-like regulation

For decades, transcription of Photorhabdus luminescens lux-operon was considered being constitutive. Therefore, this lux-operon has been used for measurements in non-specific bacterial luminescent biosensors. Here, the expression of Photorhabdus lux-operon under high temperature was studied. The exp...

Full description

Bibliographic Details
Main Authors: V.V. Fomin, S.V. Bazhenov, O.V. Kononchuk, V.O. Matveeva, A.P. Zarubina, S.E. Spiridonov, I.V. Manukhov
Format: Article
Language:English
Published: Elsevier 2023-03-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023017346
Description
Summary:For decades, transcription of Photorhabdus luminescens lux-operon was considered being constitutive. Therefore, this lux-operon has been used for measurements in non-specific bacterial luminescent biosensors. Here, the expression of Photorhabdus lux-operon under high temperature was studied. The expression was researched in the natural strain Photorhabdus temperata and in the heterologous system of Escherichia coli. P. temperata FV2201 bacterium was isolated from soil in the Moscow region (growth optimum 28 °C). We showed that its luminescence significantly increases when the temperature rises to 34 °C. The increase in luminescence is associated with an increase in the transcription of luxCDABE genes, which was confirmed by RT-PCR. The promoter of the lux-operon of the related bacterium P. luminescens ZM1 from the forests of Moldova, being cloned in the heterologous system of E. coli, is activated when the temperature rises from room temperature to 42 °C. When heat shock is caused by ethanol addition, transcription of lux-operon increases only in the natural strain of P. temperata, but not in the heterologous system of E. coli cells. In addition, the activation of the lux-operon of P. luminescens persists in E. coli strains deficient in both the rpoH and rpoE genes. These results indicate the presence of sigma 32 and sigma 24 independent heat-shock-like mechanism of regulation of the lux-operon of P. luminescens in the heterologous E. coli system.
ISSN:2405-8440