A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces

In this paper, we study a coupled fully hybrid system of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold">k</mi><mo>,</mo><m...

Full description

Bibliographic Details
Main Authors: Abdellatif Boutiara, Sina Etemad, Sabri T. M. Thabet, Sotiris K. Ntouyas, Shahram Rezapour, Jessada Tariboon
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/5/1041
_version_ 1797598231946854400
author Abdellatif Boutiara
Sina Etemad
Sabri T. M. Thabet
Sotiris K. Ntouyas
Shahram Rezapour
Jessada Tariboon
author_facet Abdellatif Boutiara
Sina Etemad
Sabri T. M. Thabet
Sotiris K. Ntouyas
Shahram Rezapour
Jessada Tariboon
author_sort Abdellatif Boutiara
collection DOAJ
description In this paper, we study a coupled fully hybrid system of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold">k</mi><mo>,</mo><mi mathvariant="sans-serif">Φ</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Hilfer fractional differential equations equipped with non-symmetric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold">k</mi><mo>,</mo><mi mathvariant="sans-serif">Φ</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Riemann-Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">RL</mi></semantics></math></inline-formula>) integral conditions. To prove the existence and uniqueness results, we use the Krasnoselskii and Perov fixed-point theorems with Lipschitzian matrix in the context of a generalized Banach space (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GBS</mi></semantics></math></inline-formula>). Moreover, the Ulam–Hyers (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">UH</mi></semantics></math></inline-formula>) stability of the solutions is discussed by using the Urs’s method. Finally, an illustrated example is given to confirm the validity of our results.
first_indexed 2024-03-11T03:16:26Z
format Article
id doaj.art-77520464b4f843b182e810c1bde5c3f2
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T03:16:26Z
publishDate 2023-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-77520464b4f843b182e810c1bde5c3f22023-11-18T03:30:06ZengMDPI AGSymmetry2073-89942023-05-01155104110.3390/sym15051041A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach SpacesAbdellatif Boutiara0Sina Etemad1Sabri T. M. Thabet2Sotiris K. Ntouyas3Shahram Rezapour4Jessada Tariboon5Laboratory of Mathematics and Applied Sciences, University of Ghardaia, Ghardaia 47000, AlgeriaDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz 3751-71379, IranDepartment of Mathematics, University of Lahej, Lahej 73560, YemenDepartment of Mathematics, University of Ioannina, 451 10 Ioannina, GreeceDepartment of Mathematics, Azarbaijan Shahid Madani University, Tabriz 3751-71379, IranIntelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, ThailandIn this paper, we study a coupled fully hybrid system of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold">k</mi><mo>,</mo><mi mathvariant="sans-serif">Φ</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Hilfer fractional differential equations equipped with non-symmetric <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi mathvariant="bold">k</mi><mo>,</mo><mi mathvariant="sans-serif">Φ</mi><mo>)</mo></mrow></semantics></math></inline-formula>–Riemann-Liouville (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">RL</mi></semantics></math></inline-formula>) integral conditions. To prove the existence and uniqueness results, we use the Krasnoselskii and Perov fixed-point theorems with Lipschitzian matrix in the context of a generalized Banach space (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">GBS</mi></semantics></math></inline-formula>). Moreover, the Ulam–Hyers (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">UH</mi></semantics></math></inline-formula>) stability of the solutions is discussed by using the Urs’s method. Finally, an illustrated example is given to confirm the validity of our results.https://www.mdpi.com/2073-8994/15/5/1041(<b>k</b>, <b>Φ</b>)–Hilfer fractional derivativeexistencenonlinear analysisUlam stabilitygeneralized Banach spacesLipschitzian matrix
spellingShingle Abdellatif Boutiara
Sina Etemad
Sabri T. M. Thabet
Sotiris K. Ntouyas
Shahram Rezapour
Jessada Tariboon
A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
Symmetry
(<b>k</b>, <b>Φ</b>)–Hilfer fractional derivative
existence
nonlinear analysis
Ulam stability
generalized Banach spaces
Lipschitzian matrix
title A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
title_full A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
title_fullStr A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
title_full_unstemmed A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
title_short A Mathematical Theoretical Study of a Coupled Fully Hybrid (k, Φ)-Fractional Order System of BVPs in Generalized Banach Spaces
title_sort mathematical theoretical study of a coupled fully hybrid k φ fractional order system of bvps in generalized banach spaces
topic (<b>k</b>, <b>Φ</b>)–Hilfer fractional derivative
existence
nonlinear analysis
Ulam stability
generalized Banach spaces
Lipschitzian matrix
url https://www.mdpi.com/2073-8994/15/5/1041
work_keys_str_mv AT abdellatifboutiara amathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT sinaetemad amathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT sabritmthabet amathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT sotiriskntouyas amathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT shahramrezapour amathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT jessadatariboon amathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT abdellatifboutiara mathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT sinaetemad mathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT sabritmthabet mathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT sotiriskntouyas mathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT shahramrezapour mathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces
AT jessadatariboon mathematicaltheoreticalstudyofacoupledfullyhybridkphfractionalordersystemofbvpsingeneralizedbanachspaces