Summary: | BACKGROUND: Prostate cancer is currently the most frequently diagnosed malignancy in men and the second leading cause of cancer-related deaths in industrialized countries. Worldwide, an increase in prostate cancer incidence is expected due to an increased life-expectancy, aging of the population and improved diagnosis. Although the specific underlying mechanisms of prostate carcinogenesis remain unknown, prostate cancer is thought to result from a combination of genetic and environmental factors altering key cellular processes. To elucidate these complex interactions and to contribute to the understanding of prostate cancer progression and metastasis, analysis of large scale gene expression studies using bioinformatics approaches is used to decipher regulation of core processes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a standardized quality control procedure and statistical analysis (http://www.arrayanalysis.org/) were applied to multiple prostate cancer datasets retrieved from the ArrayExpress data repository and pathway analysis using PathVisio (http://www.pathvisio.org/) was performed. The results led to the identification of three core biological processes that are strongly affected during prostate carcinogenesis: cholesterol biosynthesis, the process of epithelial-to-mesenchymal transition and an increased metabolic activity. CONCLUSIONS: This study illustrates how a standardized bioinformatics evaluation of existing microarray data and subsequent pathway analysis can quickly and cost-effectively provide essential information about important molecular pathways and cellular processes involved in prostate cancer development and disease progression. The presented results may assist in biomarker profiling and the development of novel treatment approaches.
|