Spin Orbit Torque-Assisted Magnetic Tunnel Junction-Based Hardware Trojan

With the advancement of beyond-CMOS devices to keep Moore’s law alive, several emerging devices have found application in a wide range of applications. Spintronic devices offer low power, non-volatility, inherent spatial and temporal randomness, simplicity of integration with a silicon substrate, et...

Full description

Bibliographic Details
Main Authors: Rajat Kumar, Divyanshu Divyanshu, Danial Khan, Selma Amara, Yehia Massoud
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/11/1753
Description
Summary:With the advancement of beyond-CMOS devices to keep Moore’s law alive, several emerging devices have found application in a wide range of applications. Spintronic devices offer low power, non-volatility, inherent spatial and temporal randomness, simplicity of integration with a silicon substrate, etc. This makes them a potential candidate for next-generation hardware options. This work explores the giant spin Hall effect (GSHE)-driven spin-orbit torque (SOT) magnetic tunnel junction (MTJ) as a potential candidate for creating an externally triggered hardware Trojan and insertion into logic-locked hardware security considering the effect of process and temperature variations.
ISSN:2079-9292