An approach for traffic collision avoidance: measuring the similar evidence on the causal factors of collisions

The lessons learned from each Traffic Collision (TC) will help safety practitioners to avoid similar occurrences in the future. However, few studies and methods have focused specifically on the similar features among different collisions. Thus, the development of a measurement method for investigati...

Full description

Bibliographic Details
Main Authors: Liangguo Kang, Shuli Zhang, Chao Wu
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2021-03-01
Series:Transport
Subjects:
Online Access:https://journals.vgtu.lt/index.php/Transport/article/view/14329
Description
Summary:The lessons learned from each Traffic Collision (TC) will help safety practitioners to avoid similar occurrences in the future. However, few studies and methods have focused specifically on the similar features among different collisions. Thus, the development of a measurement method for investigating the best evidence on the causal factors of TCs was warranted. In this study, a similarity analysis method based on the Analytic Hierarchy Process (AHP) and Similarity (S) theory, the AHP-S method, was constructed. This method was designed to identify the similar elements and similar units of collision scenes according to the analysis criteria and sub-criteria and further to calculate the degree of similarity between recognized similar pairs among TCs. Six TC cases were randomly selected as examples, and the degrees of similarity between cases 1 to 5 and case 6 were calculated separately. The calculation results showed that out of the five collision cases (cases 1–5), case 1 provided the best evidence for analysing the causal factors of case 6. This study promotes the development of quantitative analysis methods for collision incidents and provides an effective evidence-based method for TC avoidance. First published online 17 March 2021
ISSN:1648-4142
1648-3480