Fault Data Detection of Traffic Detector Based on Wavelet Packet in the Residual Subspace Associated with PCA

To improve the accuracy and efficiency of fault data identification of traffic detectors is crucial in order to decrease the probability of unexpected failures of the intelligent transportation system (ITS). Since convolutional fault data recognition based on traffic flow three-parameter law has a p...

Full description

Bibliographic Details
Main Authors: Xiaolu Li, Xi Zhang, Peng Zhang, Guangyu Zhu
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/17/3491
Description
Summary:To improve the accuracy and efficiency of fault data identification of traffic detectors is crucial in order to decrease the probability of unexpected failures of the intelligent transportation system (ITS). Since convolutional fault data recognition based on traffic flow three-parameter law has a poor capability for multiscale of fault data, PCA (principal component analysis) is adopted for traffic fault data identification. This paper proposes the fault data detection models based on the PCA model, MSPCA (multiscale principal component analysis) model and improved MSPCA model, respectively. In order to improve the recognition rate of traffic detectors’ fault data, the improved MSPCA model combines the wavelet packet energy analysis and PCA to achieve traffic detector data fault identification. On the basis of traditional MSPCA, wavelet packet multi-scale decomposition is used to get detailed information, and principal component analysis models are established on different scale matrices, and fault data are separated by wavelet packet energy difference. Through case analysis, the feasibility verification of traffic flow data identification method is carried out. The results show that the improved method proposed in this paper is effective for identifying traffic fault data.
ISSN:2076-3417